美文网首页
Shardingsphere-jdbc 配置文件加载

Shardingsphere-jdbc 配置文件加载

作者: 甜甜起司猫_ | 来源:发表于2021-08-30 22:25 被阅读0次

    Shardingsphere-jdbc 配置文件加载

    在进行jdbc的功能演示时,有个疑问

    不同的功能对应不同的配置文件,不同的配置文件是怎么被加载的,最后生成什么

    分析配置文件加载流程

    1. 生成YamlRootConfiguration
    2. 解析config
      2.1 解析数据源连接信息
      2.2 解析规则信息,生成RuleConfiguration
    3. 通过ShardingSphereDataSourceFactory生成ShardingSphereDataSource

    YamlRootConfiguration

    public final class YamlRootConfiguration implements YamlConfiguration {
        
        private String schemaName;
        
        private Map<String, Map<String, Object>> dataSources = new HashMap<>();//多数据源
        
        private Collection<YamlRuleConfiguration> rules = new LinkedList<>();//有多少个配置文件就有多少个YamlRuleConfiguration
        
        private YamlModeConfiguration mode;//控制什么?
        
        private Properties props = new Properties();//配置文件中配置的props
    }
    

    对应配置文件中的配置

    dataSources:
      ds_0:
        dataSourceClassName: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
        username: root
        password: root1234
      ds_1:
        dataSourceClassName: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
        username: root
        password: root1234
    

    通过比较配置文件和YamlRootConfiguration可以发现,配置文件中的配置可以和YamlRootConfiguration映射起来的,也就是配置文件中的内容可以被解析出来存入YamlRootConfiguration中待下一步使用

    解析数据源并启动

        public Map<String, DataSource> swapToDataSources(final Map<String, Map<String, Object>> yamlDataSources) {
            return DataSourceConverter.getDataSourceMap(yamlDataSources.entrySet().stream().collect(Collectors.toMap(Entry::getKey, entry -> swapToDataSourceConfiguration(entry.getValue()))));
        }
    
        public static Map<String, DataSource> getDataSourceMap(final Map<String, DataSourceConfiguration> dataSourceConfigMap) {
            return dataSourceConfigMap.entrySet().stream().collect(Collectors.toMap(Entry::getKey,
                entry -> entry.getValue().createDataSource(), (oldValue, currentValue) -> oldValue, LinkedHashMap::new));
        }
    
        @SneakyThrows(ReflectiveOperationException.class)
        public DataSource createDataSource() {
            DataSource result = (DataSource) Class.forName(dataSourceClassName).getConstructor().newInstance();
            Method[] methods = result.getClass().getMethods();
            Map<String, Object> allProps = new HashMap<>(props);
            allProps.putAll((Map) customPoolProps);
            for (Entry<String, Object> entry : allProps.entrySet()) {
                if (SKIPPED_PROPERTY_NAMES.contains(entry.getKey())) {
                    continue;
                }
                try {
                    Optional<Method> setterMethod = findSetterMethod(methods, entry.getKey());
                    if (setterMethod.isPresent() && null != entry.getValue()) {
                        setDataSourceField(setterMethod.get(), result, entry.getValue());
                    }
                } catch (final IllegalArgumentException ex) {
                    throw new ShardingSphereConfigurationException("Incorrect configuration item: the property %s of the dataSource, because %s", entry.getKey(), ex.getMessage());
                }
            }
            return JDBCParameterDecoratorHelper.decorate(result);//连接池配置
        }
    
        public HikariDataSource decorate(final HikariDataSource dataSource) {
            Map<String, String> urlProps = new ConnectionUrlParser(dataSource.getJdbcUrl()).getQueryMap();
            addJDBCProperty(dataSource, urlProps, "useServerPrepStmts", Boolean.TRUE.toString());
            addJDBCProperty(dataSource, urlProps, "cachePrepStmts", Boolean.TRUE.toString());
            addJDBCProperty(dataSource, urlProps, "prepStmtCacheSize", "200000");
            addJDBCProperty(dataSource, urlProps, "prepStmtCacheSqlLimit", "2048");
            addJDBCProperty(dataSource, urlProps, "useLocalSessionState", Boolean.TRUE.toString());
            addJDBCProperty(dataSource, urlProps, "rewriteBatchedStatements", Boolean.TRUE.toString());
            addJDBCProperty(dataSource, urlProps, "cacheResultSetMetadata", Boolean.FALSE.toString());
            addJDBCProperty(dataSource, urlProps, "cacheServerConfiguration", Boolean.TRUE.toString());
            addJDBCProperty(dataSource, urlProps, "elideSetAutoCommits", Boolean.TRUE.toString());
            addJDBCProperty(dataSource, urlProps, "maintainTimeStats", Boolean.FALSE.toString());
            addJDBCProperty(dataSource, urlProps, "netTimeoutForStreamingResults", "0");
            addJDBCProperty(dataSource, urlProps, "tinyInt1isBit", Boolean.FALSE.toString());
            addJDBCProperty(dataSource, urlProps, "useSSL", Boolean.FALSE.toString());
            addJDBCProperty(dataSource, urlProps, "serverTimezone", "UTC");
            HikariDataSource result = new HikariDataSource(dataSource);
            dataSource.close();
            return result;
        }
    
    1. 从配置文件中单独抽出数据源的连接信息
    2. 一个数据源对应一个DataSourceConfiguration
    3. DataSourceConfiguration启动数据源
    4. 对启动的dataSource进行加工,放入一些全局配置(这里我认为可以优化成动态配置)

    解析规则

        public Collection<RuleConfiguration> swapToRuleConfigurations(final Collection<YamlRuleConfiguration> yamlRuleConfigs) {
            Collection<RuleConfiguration> result = new LinkedList<>();
            Collection<Class<?>> ruleConfigTypes = yamlRuleConfigs.stream().map(YamlRuleConfiguration::getRuleConfigurationType).collect(Collectors.toList());
            for (Entry<Class<?>, YamlRuleConfigurationSwapper> entry : OrderedSPIRegistry.getRegisteredServicesByClass(YamlRuleConfigurationSwapper.class, ruleConfigTypes).entrySet()) {
                result.addAll(swapToRuleConfigurations(yamlRuleConfigs, entry.getKey(), entry.getValue()));
            }
            return result;
        }
    
        private Collection<RuleConfiguration> swapToRuleConfigurations(final Collection<YamlRuleConfiguration> yamlRuleConfigs, 
                                                                       final Class<?> ruleConfigType, final YamlRuleConfigurationSwapper swapper) {
            return yamlRuleConfigs.stream().filter(
                each -> each.getRuleConfigurationType().equals(ruleConfigType)).map(each -> (RuleConfiguration) swapper.swapToObject(each)).collect(Collectors.toList());
        }
    
        public static <T extends OrderedSPI<?>> Map<Class<?>, T> getRegisteredServicesByClass(final Class<T> orderedSPIClass, final Collection<Class<?>> types) {
            Collection<T> registeredServices = getRegisteredServices(orderedSPIClass);
            Map<Class<?>, T> result = new LinkedHashMap<>(registeredServices.size(), 1);//为啥设成1?
            for (T each : registeredServices) {
                types.stream().filter(type -> each.getTypeClass() == type).forEach(type -> result.put(type, each));
            }
            return result;
        }
    
        public static <T extends OrderedSPI<?>> Map<Class<?>, T> getRegisteredServicesByClass(final Class<T> orderedSPIClass, final Collection<Class<?>> types) {
            Collection<T> registeredServices = getRegisteredServices(orderedSPIClass);
            Map<Class<?>, T> result = new LinkedHashMap<>(registeredServices.size(), 1);
            for (T each : registeredServices) {
                types.stream().filter(type -> each.getTypeClass() == type).forEach(type -> result.put(type, each));
            }
            return result;
        }
    
        public static <T extends OrderedSPI<?>> Collection<T> getRegisteredServices(final Class<T> orderedSPIClass) {
            return getRegisteredServices(orderedSPIClass, Comparator.naturalOrder());//使用常数大小来排序
        }
    
        public static <T extends OrderedSPI<?>> Collection<T> getRegisteredServices(final Class<T> orderedSPIClass, final Comparator<Integer> comparator) {
            Map<Integer, T> result = new TreeMap<>(comparator);//使用treemap来达到排序目的
            for (T each : ShardingSphereServiceLoader.getSingletonServiceInstances(orderedSPIClass)) {
                Preconditions.checkArgument(!result.containsKey(each.getOrder()), "Found same order `%s` with `%s` and `%s`", each.getOrder(), result.get(each.getOrder()), each);
                result.put(each.getOrder(), each);
            }
            return result.values();
        }
    

    解析流程

    1. 提取YamlRuleConfiguration中的RuleConfigurationType
    2. 根据RuleConfigurationType将已实现的YamlRuleConfigurationSwapper按顺序转化为标准配置
    3. 最后生成ShardingRuleConfiguration集合

    YamlRuleConfigurationSwapper

    SPI 名称 详细说明
    YamlRuleConfigurationSwapper 用于将 YAML 配置转化为标准用户配置
    已知实现类 详细说明
    ReadwriteSplittingRuleAlgorithmProviderConfigurationYamlSwapper 用于将基于算法的读写分离配置转化为读写分离标准配置
    DatabaseDiscoveryRuleAlgorithmProviderConfigurationYamlSwapper 用于将基于算法的数据库发现配置转化为数据库发现标准配置
    ShardingRuleAlgorithmProviderConfigurationYamlSwapper 用于将基于算法的分片配置转化为分片标准配置
    EncryptRuleAlgorithmProviderConfigurationYamlSwapper 用于将基于算法的加密配置转化为加密标准配置
    ReadwriteSplittingRuleConfigurationYamlSwapper 用于将读写分离的 YAML 配置转化为读写分离标准配置
    DatabaseDiscoveryRuleConfigurationYamlSwapper 用于将数据库发现的 YAML 配置转化为数据库发现标准配置
    AuthorityRuleConfigurationYamlSwapper 用于将权限规则的 YAML 配置转化为权限规则标准配置
    ShardingRuleConfigurationYamlSwapper 用于将分片的 YAML 配置转化为分片标准配置
    EncryptRuleConfigurationYamlSwapper 用于将加密的 YAML 配置转化为加密标准配置
    ShadowRuleConfigurationYamlSwapper 用于将影子库的 YAML 配置转化为影子库标准配置

    可以在configuration.cn.md看到每个swapper的作用

    问题: 为什么要按顺序来注册swapper?

    ShardingRuleConfiguration

    public final class ShardingRuleConfiguration implements SchemaRuleConfiguration, DistributedRuleConfiguration {
        
        private Collection<ShardingTableRuleConfiguration> tables = new LinkedList<>();
        
        private Collection<ShardingAutoTableRuleConfiguration> autoTables = new LinkedList<>();
        
        private Collection<String> bindingTableGroups = new LinkedList<>();
        
        private Collection<String> broadcastTables = new LinkedList<>();
        
        private ShardingStrategyConfiguration defaultDatabaseShardingStrategy;
        
        private ShardingStrategyConfiguration defaultTableShardingStrategy;
        
        private KeyGenerateStrategyConfiguration defaultKeyGenerateStrategy;
    
        private String defaultShardingColumn;
        
        private Map<String, ShardingSphereAlgorithmConfiguration> shardingAlgorithms = new LinkedHashMap<>();
        
        private Map<String, ShardingSphereAlgorithmConfiguration> keyGenerators = new LinkedHashMap<>();
    }
    

    对应的配置内容

    rules:
    - !SHARDING
      tables:
        t_order: 
          actualDataNodes: ds_${0..1}.t_order_${0..1}
          tableStrategy: 
            standard:
              shardingColumn: order_id
              shardingAlgorithmName: t_order_inline
          keyGenerateStrategy:
            column: order_id
            keyGeneratorName: snowflake
        t_order_item:
          actualDataNodes: ds_${0..1}.t_order_item_${0..1}
          tableStrategy:
            standard:
              shardingColumn: order_id
              shardingAlgorithmName: t_order_item_inline
          keyGenerateStrategy:
            column: order_item_id
            keyGeneratorName: snowflake
      bindingTables:
        - t_order,t_order_item
      broadcastTables:
        - t_address
      defaultDatabaseStrategy:
        standard:
          shardingColumn: user_id
          shardingAlgorithmName: database_inline
      defaultTableStrategy:
        none:
      
      shardingAlgorithms:
        database_inline:
          type: INLINE
          props:
            algorithm-expression: ds_${user_id % 2}
        t_order_inline:
          type: INLINE
          props:
            algorithm-expression: t_order_${order_id % 2}
        t_order_item_inline:
          type: INLINE
          props:
            algorithm-expression: t_order_item_${order_id % 2}
      
      keyGenerators:
        snowflake:
          type: SNOWFLAKE
          props:
              worker-id: 123
    

    通过比较配置文件和ShardingRuleConfiguration可以发现,配置文件中的配置可以和ShardingRuleConfiguration映射起来的

    生成ShardingSphereDataSource

        public static DataSource createDataSource(final String schemaName, final ModeConfiguration modeConfig, 
                                                  final Map<String, DataSource> dataSourceMap, final Collection<RuleConfiguration> configs, final Properties props) throws SQLException {
            return new ShardingSphereDataSource(Strings.isNullOrEmpty(schemaName) ? DefaultSchema.LOGIC_NAME : schemaName, modeConfig, dataSourceMap, configs, props);
        }
    

    将解析出来的dataSourceRuleConfiguration通过调用ShardingSphereDataSource的构造方法来生成

        public ShardingSphereDataSource(final String schemaName, final ModeConfiguration modeConfig, final Map<String, DataSource> dataSourceMap,
                                        final Collection<RuleConfiguration> ruleConfigs, final Properties props) throws SQLException {
            this.schemaName = schemaName;
            contextManager = createContextManager(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);
        }
    

    ShardingSphereDataSource中的成员变量contextManager

        private ContextManager createContextManager(final String schemaName, final ModeConfiguration modeConfig, final Map<String, DataSource> dataSourceMap,
                                                    final Collection<RuleConfiguration> ruleConfigs, final Properties props) throws SQLException {
            Map<String, Map<String, DataSource>> dataSourcesMap = Collections.singletonMap(schemaName, dataSourceMap);
            Map<String, Collection<RuleConfiguration>> schemaRuleConfigs = Collections.singletonMap(
                    schemaName, ruleConfigs.stream().filter(each -> each instanceof SchemaRuleConfiguration).collect(Collectors.toList()));
            Collection<RuleConfiguration> globalRuleConfigs = ruleConfigs.stream().filter(each -> each instanceof GlobalRuleConfiguration).collect(Collectors.toList());
            ContextManagerBuilder builder = TypedSPIRegistry.getRegisteredService(ContextManagerBuilder.class, null == modeConfig ? "Memory" : modeConfig.getType(), new Properties());//工厂模式生成对应的ContextManagerBuilder
            return builder.build(modeConfig, dataSourcesMap, schemaRuleConfigs, globalRuleConfigs, props, null == modeConfig || modeConfig.isOverwrite());
        }
    
        @Override
        public ContextManager build(final ModeConfiguration modeConfig, final Map<String, Map<String, DataSource>> dataSourcesMap,
                                    final Map<String, Collection<RuleConfiguration>> schemaRuleConfigs, final Collection<RuleConfiguration> globalRuleConfigs,
                                    final Properties props, final boolean isOverwrite) throws SQLException {
            MetaDataContexts metaDataContexts = new MetaDataContextsBuilder(dataSourcesMap, schemaRuleConfigs, globalRuleConfigs, props).build(null);
            TransactionContexts transactionContexts = createTransactionContexts(metaDataContexts);
            ContextManager result = new MemoryContextManager();
            result.init(metaDataContexts, transactionContexts);
            return result;
        }
    

    相关文章

      网友评论

          本文标题:Shardingsphere-jdbc 配置文件加载

          本文链接:https://www.haomeiwen.com/subject/qlcailtx.html