美文网首页MIS
【Pillow】Python图像处理

【Pillow】Python图像处理

作者: 王南北丶 | 来源:发表于2018-05-14 15:23 被阅读1308次

    本文地址:https://www.jianshu.com/p/3740dec1f436


    1. 简介

    Python传统的图像处理库PIL(Python Imaging Library ),可以说基本上是Python处理图像的标准库,功能强大,使用简单。

    但是由于PIL不支持Python3,而且更新缓慢。所以有志愿者在PIL的基础上创建了一个分支版本,命名为PillowPillow目前最新支持到python3.6,更新活跃,并且增添了许多新的特性。所以我们安装Pillow即可。


    2. 安装

    Pillow的安装比较的简单,直接pip安装即可:

    pip install Pillow
    

    但是要注意的一点是,PillowPIL不能共存在同一个环境中,所以如果安装的有PIL的话,那么安装Pillow之前应该删除PIL

    由于是继承自PIL的分支,所以Pillow的导入是这样的:

    import PIL 
    # 或者
    from PIL import Image
    

    3. Image

    Image是Pillow中最为重要的类,实现了Pillow中大部分的功能,这个类的主要用来表示图片对象。要创建这个类的实例主要有三个方式:

    1. 从文件加载图像
    2. 处理其他图像获得
    3. 创建一个新的图像

    3.1. 读取图像

    一般来说,我们都是都过从文件加载图像来实例化这个类,如下所示:

    from PIL import Image
    picture = Image.open('happy.png')
    

    如果没有指定图片格式的话,那么Pillow会自动识别文件内容为文件格式。

    3.2. 新建图像

    Pillow新建空白图像使用new()方法, 第一个参数是mode即颜色空间模式,第二个参数指定了图像的分辨率(宽x高),第三个参数是颜色。

    • 可以直接填入常用颜色的名称。如'red'。
    • 也可以填入十六进制表示的颜色,如#FF0000表示红色。
    • 还能传入元组,比如(255, 0, 0, 255)或者(255, 0, 0)表示红色。
    picture = Image.new('RGB', (200, 100), 'red')
    

    3.3. 保存图像

    保存图片的话需要使用save()方法:

    picture.save('happy.png')
    

    保存的时候,如果没有指定图片格式的话,那么Pillow会根据输入的后缀名决定保存的文件格式。


    3.4. 图像的坐标表示

    在Pillow中,用的是图像的左上角为坐标的原点(0,0),所以这意味着,x轴的数值是从左到右增长的,y轴的数值是从上到下增长的。

    我们处理图像时,常常需要去表示一个矩形的图像区域。Pillow中很多方法都需要传入一个表示矩形区域的元祖参数。

    这个元组参数包含四个值,分别代表矩形四条边的距离X轴或者Y轴的距离。顺序是(左,顶,右,底)。其实就相当于,矩形的左上顶点坐标为(左,顶),矩形的右下顶点坐标为(右,底),两个顶点就可以确定一个矩形的位置。

    右和底坐标稍微特殊,跟python列表索引规则一样,是左闭又开的。可以理解为[左, 右)[顶, 底)这样左闭右开的区间。比如(3, 2, 8, 9)就表示了横坐标范围[3, 7];纵坐标范围[2, 8]的矩形区域。


    3.5. 常用属性

    • PIL.Image.filename

      图像源文件的文件名或者路径,只有使用open()方法创建的对象有这个属性。

      类型:字符串

    • PIL.Image.format

      图像源文件的文件格式。

    • PIL.Image.mode

      图像的模式,一般来说是“1”, “L”, “RGB”, 或者“CMYK” 。

    • PIL.Image.size

      图像的大小

    • PIL.Image.width

      图像的宽度

    • PIL.Image.height

      图像的高度

    • PIL.Image.info

      图像的一些信息,为字典格式


    3.6. 常用方法

    3.6.1. 裁剪图片

    Image使用crop()方法来裁剪图像,此方法需要传入一个矩形元祖参数,返回一个新的Image对象,对原图没有影响。

    croped_im = im.crop((100, 100, 200, 200))
    

    3.6.2. 复制与粘贴图像

    复制图像使用copy()方法:

    copyed_im = im.copy()
    

    粘贴图像使用paste()方法:

    croped_im = im.crop((100, 100, 200, 200))
    im.paste(croped_im, (0, 0))
    

    im对象调用了paste()方法,第一个参数是被裁剪下来用来粘贴的图像,第二个参数是一个位置参数元祖,这个位置参数是粘贴的图像的左顶点。

    3.6.3 调整图像的大小

    调整图像大小使用resize()方法:

    resized_im = im.resize((width, height))
    

    resize()方法会返回一个重设了大小的Image对象。

    3.6.4. 旋转图像和翻转图像

    旋转图像使用rotate()方法,此方法按逆时针旋转,并返回一个新的Image对象:

    # 逆时针旋转90度
    im.rotate(90)
    im.rotate(180)
    im.rotate(20, expand=True)
    

    旋转的时候,会将图片超出边界的边角裁剪掉。如果加入expand=True参数,就可以将图片边角保存住。

    翻转图像使用transpose()

    # 水平翻转
    im.transpose(Image.FLIP_LEFT_RIGHT)
    # 垂直翻转
    im.transpose(Image.FLIP_TOP_BOTTOM)
    

    3.6.5. 获取单个像素的值

    使用getpixel(xy)方法可以获取单个像素位置的值:

    im.getpixel((100, 100))
    

    传入的xy需要是一个元祖形式的坐标。

    如果图片是多通道的,那么返回的是一个元祖。

    3.6.6. 通过通道分割图片

    split()

    split()可以将多通道图片按通道分割为单通道图片:

    R, G, B = im.split()
    

    split()方法返回的是一个元祖,元祖中的元素则是分割后的单个通道的值。

    getchannel(channel)

    getchannel()可以获取单个通道的数据:

    R = im.getchannel("R")
    

    3.6.7. 加载图片全部数据

    我们可以使用load()方法加载图片所有的数据,并比较方便的修改像素的值:

    pixdata = im.load()
    pixdata[100,200] = 255
    

    此方法返回的是一个PIL.PyAccess,可以通过这个类的索引来对指定坐标的像素点进行修改。

    3.6.8. 关闭图片并释放内存

    此方法会删除图片对象并释放内存

    im.close()
    

    相关文章

      网友评论

        本文标题:【Pillow】Python图像处理

        本文链接:https://www.haomeiwen.com/subject/qlcjdftx.html