美文网首页
OpenGL ES 光照计算

OpenGL ES 光照计算

作者: 盾子 | 来源:发表于2019-06-23 20:31 被阅读0次

冯氏光照模型:主要结构由3个元素组成:环境(Ambient)光照、漫反射(Diffuse)光照和镜面(Specular)光照

  • 环境(Ambient)光照:即使在最黑暗的正常环境下,世界上依然会存在一些光亮,也就是说物体几乎永远不会是完全黑暗的。环境光照一般是由室外的太阳通过各种折射来让我们看到,这样的光是没有任何起点,没有方向的光。主要通过设置物体颜色来获取。
  • 漫反射(Diffuse)光照:模拟的是光源对物体方向的影响,一个物体面向光源的时候,朝向光的那个面会亮一点,物体背面和其他面会暗一点。
  • 镜面(Specular)光照:模拟的是有光泽物体上面出现的亮点。镜面光照的颜色相比于物体的颜色会更倾向于光的颜色。

光照特性

  • 发射光:由物体自身发光
  • 环境光:就是在环境中充分散射的光,而且无法分辨它的方向
  • 漫反射光:光线来自某个方向,但在物体上各个方向反射
  • 镜面高光:光线来自一个特定的方向,然后在物体表面上以一个特定的方向反射出去

材质属性

  • 泛射材质
  • 漫反射材质
  • 镜面反射材质
  • 发射材质

单一光照计算公式

  • 环境光 = 光源的环境光颜色 * 物体的材质颜色
  • 发射光 = 物体的反射材质颜色
  • 漫反射颜色 = 光源的漫反射颜⾊ * 物体的漫发射材质颜色 * DiffuseFactor
    其中漫反射因子DiffuseFactor是光线与顶点法线向量的点积,即:DiffuseFactor = max(0,dot(N,L))
  • 镜⾯反射颜色 = 光源的镜⾯光的颜色 * 物体的镜⾯材质颜⾊ * SpecularFactor
    其中SpecularFactor = power(max(0,dot(N,H)),shininess)
    H : 视线向量E 与 光线向量L 的半向量
    dot(N,H): H,N的点积⼏何意义,平方线与法线夹角的cos值
    shiniess : ⾼光的反光度;

综合光照计算公式

  • 光照颜⾊ =(环境颜色 + 漫反射颜色 + 镜⾯反射颜色)* 衰减因⼦
    衰减因⼦ = 1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平⽅)
    解析:距离衰减常量,线性衰减常量和⼆次衰减常量均为常量值
    环境光。
    注意:漫反射光和镜面光的强度都会受距离的增⼤而衰减,只有发射光和全局环境光的强度不会受影响

  • 聚光灯因子
    聚光灯夹⻆cos值 = power(max(0,dot(单位光源位置,单位光线向量)),聚光灯指数)

    • 单位光线向量是从光源指向顶点的单位向量
    • 聚光灯指数表示聚光灯的亮度
    • 公式解读:单位光源位置 * 单位光线向量 点积 的 聚光灯指数次⽅

    聚光灯因子 = clamp((外环的聚光灯⻆度cos值 - 当前顶点的聚光灯⻆度cos值)/ (外环的聚光灯角度cos值- 内环聚光灯的⻆度的cos值),0,1);

  • 光照计算终极公式
    光照颜⾊ = 发射颜色 + 全局环境颜色 + (环境颜⾊ + 漫反射颜色 + 镜⾯反射颜色) * 聚光灯效果 * 衰减因⼦

光照计算的GLSL代码实现
片元着色器代码:

#version 300 es

precision mediump float;
out vec4 FragColor;

uniform vec3 lightColor;    //光源颜色
uniform vec3 lightPo;       //光源位置
uniform vec3 viewPo;        //视角位置
uniform sampler2D Texture;          //物体纹理
uniform sampler2D specularTexture;  //镜面纹理

in vec2 outTexCoord;    //纹理坐标
in vec3 outNormal;      //顶点法向量
in vec3 FragPo;         //顶点坐标

void main()
{
    //聚光版本
    //Spotlight();
    //点光源版本
    //pointLight();
    //平行光版本
    //parallelLight();
     DiffultLight();
    
}

//点光源版本
void pointLight(){
    
    float ambientStrength = 0.3;    //环境因子
    float specularStrength = 2.0;   //镜面强度
    float reflectance = 256.0;      //反射率

    float constantPara = 1.0f;     //距离衰减常量
    float linearPara = 0.09f;      //线性衰减常量
    float quadraticPara = 0.032f;  //二次衰减常量

    //环境光 = 环境因子 * 物体的材质颜色
    vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;

    //漫反射
    vec3 norm = normalize(outNormal);
    //当前顶点 至 光源的的单位向量
    vec3 lightDir = normalize(lightPo - FragPo);
    //DiffuseFactor=光源与法线夹角 max(0,dot(N,L))
    float diff = max(dot(norm,lightDir),0.0);
    //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
    vec3 diffuse = diff * lightColor*texture(Texture,outTexCoord).rgb;

    //镜面反射
    vec3 viewDir = normalize(viewPo - FragPo);
    // reflect (genType I, genType N),返回反射向量
    vec3 reflectDir = reflect(-lightDir,outNormal);
    //SpecularFactor = power(max(0,dot(N,H)),shininess)
    float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
    //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
    vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;

    //衰减因子计算
    float LFDistance = length(lightPo - FragPo);
    //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
    float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));
    
    //光照颜色 =(环境颜色 + 漫反射颜色 + 镜面反射颜色)* 衰减因子
    vec3 res = (ambient + diffuse + specular)*lightWeakPara;

    //最终输出的颜色
    FragColor = vec4(res,1.0);

}

// 平行光版本
void parallelLight(){
  
    float ambientStrength = 0.3;    //环境因子
    float specularStrength = 2.0;   //镜面强度
    float reflectance = 256.0;      //反射率

    //平行光方向
    //vec3 paraLightDir = normalize(vec3(-0.2,-1.0,-0.3));
    vec3 paraLightDir =normalize(vec3(-1,-1,1));

    //环境光 = 环境因子 * 物体的材质颜色
    vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;

    //漫反射
    vec3 norm = normalize(outNormal);
    //当前顶点至光源的的单位向量
    vec3 lightDir = normalize(lightPo - FragPo);
    //DiffuseFactor=光源与paraLightDir 平行光夹角 max(0,dot(N,L))
    float diff = max(dot(norm,paraLightDir),0.0);
    //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
    vec3 diffuse = diff * lightColor * texture(Texture,outTexCoord).rgb;

    //镜面反射
    vec3 viewDir = normalize(viewPo - FragPo);
    // reflect (genType I, genType N),返回反射向量 -paraLightDir平行光
    vec3 reflectDir = reflect(-paraLightDir,outNormal);
    //SpecularFactor = power(max(0,dot(N,H)),shininess)
    float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
    //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
    vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;

    //距离衰减常量
    float constantPara = 1.0f;
    //线性衰减常量
    float linearPara = 0.09f;
    //二次衰减常量
    float quadraticPara = 0.032f;
    //衰减因子计算
    float LFDistance = length(lightPo - FragPo);
    //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
    float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));

    //光照颜色 =(环境颜色 + 漫反射颜色 + 镜面反射颜色)* 衰减因子
    vec3 res = (ambient + diffuse + specular)*lightWeakPara;
    
    //最终输出的颜色
    FragColor = vec4(res,1.0);
}

//聚光版本
void Spotlight(){
   
    float ambientStrength = 0.3;    //环境因子
    float specularStrength = 2.0;   //镜面强度
    float reflectance = 256.0;      //反射率

    //环境光 = 环境因子 * 物体的材质颜色
    vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;

    //漫反射
    vec3 norm = normalize(outNormal);
    vec3 lightDir = normalize(lightPo - FragPo);    //当前顶点 至 光源的的单位向量
    //DiffuseFactor=光源与paraLightDir lightDir夹角 max(0,dot(N,L))
    float diff = max(dot(norm,lightDir),0.0);   //光源与法线夹角
    //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
    vec3 diffuse = diff * lightColor*texture(Texture,outTexCoord).rgb;

    //镜面反射
    vec3 viewDir = normalize(viewPo - FragPo);
     // reflect (genType I, genType N),返回反射向量
    vec3 reflectDir = reflect(-lightDir,outNormal);
    //SpecularFactor = power(max(0,dot(N,H)),shininess)
    float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
    //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
    vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;

    float constantPara = 1.0f;    //距离衰减常量
    float linearPara = 0.09f;     //线性衰减常量
    float quadraticPara = 0.032f; //二次衰减常量
    
    //衰减因子计算
    float LFDistance = length(lightPo - FragPo);
    //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
    float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));

    //聚光灯切角 (一些复杂的计算操作 应该让CPU做,提高效率,不变的量也建议外部传输,避免重复计算)
    float inCutOff = cos(radians(10.0f));
    float outCutOff = cos(radians(15.0f));
    vec3 spotDir = vec3(-1.2f,-1.0f,-2.0f);
    
    //聚光灯因子 = clamp((外环的聚光灯角度cos值 - 当前顶点的聚光灯角度cos值)/(外环的聚光灯角度cos值- 内环聚光灯的角度的cos值),0,1);
    float theta = dot(lightDir,normalize(-spotDir));
    //(外环的聚光灯角度cos值- 内环聚光灯的角度的cos值)
    float epsilon  = inCutOff - outCutOff;
    //(外环的聚光灯角度cos值 - 当前顶点的聚光灯角度cos值) / (外环的聚光灯角度cos值- 内环聚光灯的角度的cos值)
    float intensity = clamp((theta - outCutOff)/epsilon,0.0,1.0);
    vec3 res = (ambient + diffuse + specular)*intensity*lightWeakPara;

    FragColor = vec4(res,1.0);
}

void DiffultLight(){
    
    float ambientStrength = 0.3;    //环境因子
    //环境光 = 环境因子 * 物体的材质颜色
    vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;
    
    //光源方向
    //vec3 paraLightDir =normalize(vec3(0,1,0));

    //漫反射
    vec3 norm = normalize(outNormal);
    vec3 lightDir = normalize(lightPo - FragPo);    //当前顶点 至 光源的的单位向量
    //DiffuseFactor=光源与paraLightDir lightDir夹角 max(0,dot(N,L))
    float diff = max(dot(norm,lightDir),0.0);   //光源与法线夹角
    //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
    vec3 diffuse = diff * lightColor * texture(Texture,outTexCoord).rgb;
    
     vec3 res = ambient + diffuse;
     FragColor = vec4(res,1.0);
}

相关文章

  • OpenGL ES光照计算

    光照是OpenGL ES里很重要的一部分,下面我们来学习总结一下如何计算不同的光照效果。 光照基础1、环境光照2、...

  • OpenGL ES 􏳆􏰤􏷐􏶾􏲗􏵘光照计算

    光照基础 环境光 漫反射光 镜面光 光照特性 发射光:由物体自身发光 环境光:环境中充分散射的光,而且无法分辨它的...

  • OpenGL ES光照计算

    光照基础 环境光照:利用环境光可以描述一块区域的亮度,通常在场景中,环境光的颜色是一个常量 漫反射光照:光线向所有...

  • OpenGL ES 光照计算

    冯氏光照模型:主要结构由3个元素组成:环境(Ambient)光照、漫反射(Diffuse)光照和镜面(Specul...

  • OPenGL ES光照计算

    现实世界的光照是极其复杂的,而且会受到诸多因素的影响,这是以目前我们所拥有的处理能力无法模拟的。因此OpenGL的...

  • OpenGL ES 光照计算

    光照计算在片元着色器执行,计算每一个像素点的颜色 一、光照计算 1、环境光计算 环境光 = 光源的环境光颜色 * ...

  • OpenGL ES 光照计算

    光照基础 1.环境光照(ambient) 2.漫反射光照(diffuse) 3.镜面光照(specular) 光照...

  • OpenGL ES之旅(四)-- OpenGL ES 光照计算

    光照是个很复杂的话题,尤其是多光源,阴影的计算。在这篇文章中,我会详细介绍不同类型光的性质以及物体的材质属性,以及...

  • OpenGL ES(八)-光照计算

    光照基础 从生理学的角度上讲,眼睛之所以看见各种物体,是因为光线直接或间接的从它们那里到达了眼睛。人类对于光线强弱...

  • OpenGL ES 关于光照计算

    有关光照的代码公式, 在此用CC老师已经写好的代码做一个记录, 方便以后使用的时候查询. 记录一个函数-->根据你...

网友评论

      本文标题:OpenGL ES 光照计算

      本文链接:https://www.haomeiwen.com/subject/qlmwqctx.html