插入排序:
直接插入排序
,希尔排序
选择排序:简单选择排序
,堆排序
交换排序:冒泡排序
,快速排序
归并排序
基数排序
- 插入排序
public static void sort(int[] arr, int l) {
//将arr[0]作为一个有序数组,从arr[1]开始到arr[l-1]进行遍历
for (int i = 1; i < l; i++) {
//将arr[i]的值复制出来,防止当j=i-1且arr[i]<arr[j]时,将arr[j]往后移时将arr[i]的值覆盖.
int temp = arr[i];
//在for循环外声明变量j,方便在循环结束后将arr[j+1]赋值为初始的arr[i],即将arr[i]的值插入到arr[j+1].
int j = i - 1;
//从arr[i-1]开始循环如果arr[i]的初始值小于循环-1的arr[j],则将arr[j]后移一位.
for (; j >= 0 && temp < arr[j]; j--) {
arr[j + 1] = arr[j];
}
//直到j=0并arr[1]=arr[0]后,或arr[i]的初始值大于指定的arr[j],即将arr[i]的初始值赋给arr[j+1].
arr[j + 1] = temp;
}
System.out.println(Arrays.toString(arr));
}
- 希尔排序
public static void shellSort(int[] array) {
int i;
int j;
int temp;
int gap = 1;
int len = array.length;
while (gap < len / 3) { gap = gap * 3 + 1; }
for (; gap > 0; gap /= 3) {
for (i = gap; i < len; i++) {
temp = array[i];
for (j = i - gap; j >= 0 && array[j] > temp; j -= gap) {
array[j + gap] = array[j];
}
array[j + gap] = temp;
}
}
System.out.println(Arrays.toString(array) + " shellSort");
- 简单选择排序
public static void selectSort(int[] array) {
int position = 0;
for (int i = 0; i < array.length; i++) {
int j = i + 1;
position = i;
int temp = array[i];
for (; j < array.length; j++) {
if (array[j] < temp) {
temp = array[j];
position = j;
}
}
array[position] = array[i];
array[i] = temp;
}
System.out.println(Arrays.toString(array) + " selectSort");
- 堆排序
public static void heapSort(int[] arr) {
/**
* 第一步:将数组堆化
* beginIndex = 第一个非叶子节点
* 从第一个非叶子节点开始即可.从最后一个叶子节点开始.
* 叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大.
*/
int len = arr.length - 1;
int beginIndex = (len - 1) >> 1;
for (int i = beginIndex; i >= 0; i--) {
maxHeapify(i, len, arr);
}
/**
* 第二步:对堆化数据排序
* 每次都是移出最顶层的根节点arr[0],与最尾部节点位置调换,同时遍历长度 -1;
* 然后重新整理被换到根节点的末尾元素,使其符合堆的特性.
*直至未排序的堆长度为0.
*/
for (int i = len; i > 0; i--) {
swap(0, i, arr);
maxHeapify(0, i - 1, arr);
}
System.out.println("heapSort" + Arrays.toString(arr));
}
private static void swap(int i, int j, int[] arr) {
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j];
arr[i] = arr[i] ^ arr[j];
}
/**
* 调整索引为index处的数据,使其符合堆的特性
*
* @param index 需要堆化处理的数据索引
* @param len 未排序的堆(数组)的长度.
*/
private static void maxHeapify(int index, int len, int[] arr) {
//左子节点索引
int li = (index << 1) + 1;
//右子节点索引
int ri = li + 1;
//子节点值最大索引,默认左子节点
int cMax = li;
//左子节点索引超出计算范围,直接返回
if (li > len) return;
//先判断左右子节点,哪个比较大.
if (ri <= len && arr[ri] > arr[li]) cMax = ri;
//如果大子节点大于父节点则调换
if (arr[cMax] > arr[index]) {
swap(cMax, index, arr);
maxHeapify(cMax, len, arr);
}
}
- 冒泡排序
public static void bubbleSort(int[] array) {
int temp = 0;
for (int i = 0; i < array.length - 1; i++) {
for (int j = 0; j < array.length - 1 - i; j++) {
if (array[j] > array[j + 1]) {
temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
}
}
}
System.out.println(Arrays.toString(array) + " bubbleSort");
}
- 快速排序
public static void quickSort(int[] array) {
_quickSort(array, 0, array.length - 1);
System.out.println(Arrays.toString(array) + " quickSort");
}
private static int getMiddle(int[] list, int low, int high) {
int tmp = list[low]; //数组的第一个作为中轴
while (low < high) {
while (low < high && list[high] >= tmp) {
high--;
}
list[low] = list[high]; //比中轴小的记录移到低端
while (low < high && list[low] <= tmp) {
low++;
}
list[high] = list[low]; //比中轴大的记录移到高端
}
list[low] = tmp; //中轴记录到尾
return low; //返回中轴的位置
}
private static void _quickSort(int[] list, int low, int high) {
if (low < high) {
int middle = getMiddle(list, low, high); //将list数组进行一分为二
_quickSort(list, low, middle - 1); //对低字表进行递归排序
_quickSort(list, middle + 1, high); //对高字表进行递归排序
}
}
- 归并排序
public static void mergingSort(int[] array) {
sort(array, 0, array.length - 1);
System.out.println(Arrays.toString(array) + " mergingSort");
}
private static void sort(int[] data, int left, int right) {
if (left < right) {
//找出中间索引
int center = (left + right) / 2;
//对左边数组进行递归
sort(data, left, center);
//对右边数组进行递归
sort(data, center + 1, right);
//合并
merge(data, left, center, right);
}
}
private static void merge(int[] data, int left, int center, int right) {
int[] tmpArr = new int[data.length];
int mid = center + 1;
//third记录中间数组的索引
int third = left;
int tmp = left;
while (left <= center && mid <= right) {
//从两个数组中取出最小的放入中间数组
if (data[left] <= data[mid]) {
tmpArr[third++] = data[left++];
} else {
tmpArr[third++] = data[mid++];
}
}
//剩余部分依次放入中间数组
while (mid <= right) {
tmpArr[third++] = data[mid++];
}
while (left <= center) {
tmpArr[third++] = data[left++];
}
//将中间数组中的内容复制回原数组
while (tmp <= right) {
data[tmp] = tmpArr[tmp++];
}
}
- 基数排序
基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
public static void radixSort(int[] array) {
//首先确定排序的趟数;
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
int time = 0;
//判断位数;
while (max > 0) {
max /= 10;
time++;
}
//建立10个队列;
ArrayList<ArrayList<Integer>> queue = new ArrayList<>();
for (int i = 0; i < 10; i++) {
ArrayList<Integer> queue1 = new ArrayList<>();
queue.add(queue1);
}
//进行time次分配和收集;
for (int i = 0; i < time; i++) {
//分配数组元素;
for (int anArray : array) {
//得到数字的第time+1位数;
int x = anArray % (int)Math.pow(10, i + 1) / (int)Math.pow(10, i);
ArrayList<Integer> queue2 = queue.get(x);
queue2.add(anArray);
queue.set(x, queue2);
}
int count = 0;//元素计数器;
//收集队列元素;
for (int k = 0; k < 10; k++) {
while (queue.get(k).size() > 0) {
ArrayList<Integer> queue3 = queue.get(k);
array[count] = queue3.get(0);
queue3.remove(0);
count++;
}
}
}
System.out.println(Arrays.toString(array) + " radixSort");
}
网友评论