本文介绍numpy的矩阵赋值操作和copy操作
Demo.py
# =的赋值方式会带有关联性
import numpy as np
a = np.arange(4)
# array([0, 1, 2, 3])
b = a
c = a
d = b
#改变a的第一个值,b、c、d的第一个值也会同时改变。
a[0] = 11
print(a)
# array([11, 1, 2, 3])
#确认b、c、d是否与a相同。
b is a # True
c is a # True
d is a # True
#同样更改d的值,a、b、c也会改变。
d[1:3] = [22, 33] # array([11, 22, 33, 3])
print(a) # array([11, 22, 33, 3])
print(b) # array([11, 22, 33, 3])
print(c) # array([11, 22, 33, 3])
#copy()的赋值方式没有关联性
b = a.copy() # deep copy
print(b) # array([11, 22, 33, 3])
a[3] = 44
print(a) # array([11, 22, 33, 44])
print(b) # array([11, 22, 33, 3])
结果:
[11 1 2 3]
[11 22 33 3]
[11 22 33 3]
[11 22 33 3]
[11 22 33 3]
[11 22 33 44]
[11 22 33 3]
网友评论