[Mysql]-锁

作者: 但莫 | 来源:发表于2017-02-26 18:14 被阅读0次

    MySQL的事务支持

    MySQL的事务支持不是绑定在MySQL服务器本身,而是与存储引擎相关:

    • MyISAM:不支持事务,用于只读程序提高性能
    • InnoDB:支持ACID事务、行级锁、并发
    • Berkeley DB:支持事务

    隔离级别

    隔离级别决定了一个session中的事务可能对另一个session的影响、并发session对数据库的操作、一个session中所见数据的一致性。
    ANSI标准定义了4个隔离级别,MySQL的InnoDB都支持:

    Java代码

    1. READ UNCOMMITTED:最低级别的隔离,通常又称为dirty read,它允许一个事务读取还没commit的数据,这样可能会提高性能,但是dirty read可能不是我们想要的
    2. READ COMMITTED:在一个事务中只允许已经commit的记录可见,如果session中select还在查询中,另一session此时insert一条记录,则新添加的数据不可见
    3. REPEATABLE READ:在一个事务开始后,其他session对数据库的修改在本事务中不可见,直到本事务commit或rollback。在一个事务中重复select的结果一样,除非本事务中update数据库。
    4. SERIALIZABLE:最高级别的隔离,只允许事务串行执行。为了达到此目的,数据库会锁住每行已经读取的记录,其他session不能修改数据直到前一事务结束,事务commit或取消时才释放锁。

    MySQL锁

    相对于其他的数据库而言,MySQL的锁机制比较简单,最显著的特点就是不同的存储引擎支持不同的锁机制。根据不同的存储引擎,MySQL中锁的特性可以大致归纳如下:

    - 行锁 表锁 页锁
    InnoDB -
    MyISAM - -
    BDB -

    开销、加锁速度、死锁、粒度、并发性能

    表锁: 开销小,加锁快;不会出现死锁;锁定力度大,发生锁冲突概率高,并发度最低
    行锁: 开销大,加锁慢;会出现死锁;锁定粒度小,发生锁冲突的概率低,并发度高
    页锁: 开销和加锁速度介于表锁和行锁之间;会出现死锁;锁定粒度介于表锁和行锁之间,并发度一般

    从上述的特点课件,很难笼统的说哪种锁最好,只能根据具体应用的特点来说哪种锁更加合适。仅仅从锁的角度来说的话:

    表锁更适用于以查询为主,只有少量按索引条件更新数据的应用;
    行锁更适用于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用。
    (PS:由于BDB已经被InnoDB所取代,我们只讨论MyISAM表锁和InnoDB行锁的问题)

    MyISAM表锁

    MyISAM存储引擎只支持表锁,这也是MySQL开始几个版本中唯一支持的锁类型。随着应用对事务完整性和并发性要求的不断提高,MySQL才开始开发基于事务的存储引擎,后来慢慢出现了支持页锁的BDB存储引擎和支持行锁的InnoDB存储引擎(实际 InnoDB是单独的一个公司,现在已经被Oracle公司收购)。但是MyISAM的表锁依然是使用最为广泛的锁类型。本节将详细介绍MyISAM表锁的使用。

    查询表级锁争用情况
    可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定争夺:

    mysql> show status like ‘table%‘;
    +-----------------------+-------+
    | Variable_name         | Value |
    +-----------------------+-------+
    | Table_locks_immediate | 2979  |
    | Table_locks_waited    | 0     |
    +-----------------------+-------+
    2 rows in set (0.00 sec))
    

    如果Table_locks_waited的值比较高,则说明存在着较严重的表级锁争用情况。
    MySQL表级锁的锁模式
    MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性如下表所示。

    MySQL中的表锁兼容性

    请求锁模式是否兼容

    当前锁模式 None 读锁 写锁
    读操作
    写操作

    可见,对MyISAM表的读锁,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求
    对 MyISAM表的写锁,则会阻塞其他用户对同一表的读和写操作
    MyISAM表的读操作与写操作之间,以及写操作之间是串行的!根据如下表所示的例子可以知道,当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。

    session_1

    获得表film_text的WRITE锁定
    mysql> lock table film_text write;
    Query OK, 0 rows affected (0.00 sec)
    
    当前session对锁定表的查询、更新、插入操作都可以执行:
    

    session_2

    其他session对锁定表的查询被阻塞,需要等待锁被释放:
    mysql> select film_id,title from film_text where film_id = 1001;
    等待
    

    session_1

    mysql> select film_id,title from film_text where film_id = 1001;
    +---------+-------------+
    | film_id | title       |
    +---------+-------------+
    | 1001    | Update Test |
    +---------+-------------+
    1 row in set (0.00 sec)
    mysql> insert into film_text (film_id,title) values(1003,‘Test‘);
    Query OK, 1 row affected (0.00 sec)
    mysql> update film_text set title = ‘Test‘ where film_id = 1001;
    Query OK, 1 row affected (0.00 sec)
    Rows matched: 1  Changed: 1  Warnings: 0
    其他session对锁定表的查询被阻塞,需要等待锁被释放:
    mysql> select film_id,title from film_text where film_id = 1001;
    等待
    释放锁:
    mysql> unlock tables;
    Query OK, 0 rows affected (0.00 sec)
    
    

    Session2获得锁,查询返回:

    mysql> select film_id,title from film_text where film_id = 1001;
    +---------+-------+
    | film_id | title |
    +---------+-------+
    | 1001    | Test  |
    +---------+-------+
    1 row in set (57.59 sec)
    

    如何加表锁

    MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。在示例中,显式加锁基本上都是为了方便而已,并非必须如此。

    给MyISAM表显示加锁,一般是为了在一定程度模拟事务操作,实现对某一时间点多个表的一致性读取。
    例如,有一个订单表orders,其中记录有各订单的总金额total,同时还有一个订单明细表order_detail,其中记录有各订单每一产品的金额小计 subtotal,假设我们需要检查这两个表的金额合计是否相符,可能就需要执行如下两条SQL:

    Select sum(total) from orders;
    Select sum(subtotal) from order_detail;
    

    这时,如果不先给两个表加锁,就可能产生错误的结果,因为第一条语句执行过程中,order_detail表可能已经发生了改变。因此,正确的方法应该是:

    Lock tables orders read local, order_detail read local;
    Select sum(total) from orders;
    Select sum(subtotal) from order_detail;
    Unlock tables;
    

    要特别说明以下两点内容。
    上面的例子在LOCK TABLES时加了“local”选项,其作用就是在满足MyISAM表并发插入条件的情况下,允许其他用户在表尾并发插入记录,有关MyISAM表的并发插入问题,在后面的章节中还会进一步介绍。在用LOCK TABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。
    也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,
    如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MyISAM总是一次获得SQL语句所需要的全部锁。
    这也正是MyISAM表不会出现死锁(Deadlock Free)的原因。

    如:
    一个session使用LOCK TABLE命令给表film_text加了读锁,这个session可以查询锁定表中的记录,但更新或访问其他表都会提示错误;
    同时,另外一个session可以查询表中的记录,但更新就会出现锁等待。

    注意,当使用LOCK TABLES时,不仅需要一次锁定用到的所有表,而且,同一个表在SQL语句中出现多少次,就要通过与SQL语句中相同的别名锁定多少次,否则也会出错!
    举例说明如下。

    (1)对actor表获得读锁:
    mysql> lock table actor read;
    Query OK, 0 rows affected (0.00 sec)
    (2)但是通过别名访问会提示错误:
    mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = ‘Lisa‘ and a.last_name = ‘Tom‘ and a.last_name <> b.last_name;
    ERROR 1100 (HY000): Table ‘a‘ was not locked with LOCK TABLES
    (3)需要对别名分别锁定:
    mysql> lock table actor as a read,actor as b read;
    Query OK, 0 rows affected (0.00 sec)
    (4)按照别名的查询可以正确执行:
    mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = ‘Lisa‘ and a.last_name = ‘Tom‘ and a.last_name <> b.last_name;
    +------------+-----------+------------+-----------+
    | first_name | last_name | first_name | last_name |
    +------------+-----------+------------+-----------+
    | Lisa       | Tom       | LISA       | MONROE    |
    +------------+-----------+------------+-----------+
    1 row in set (0.00 sec)
    

    并发插入(Concurrent Inserts)

    上文提到过MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。
    MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。

    • 当concurrent_insert设置为0时,不允许并发插入。
    • 当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。
    • 当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。

    例如session_1获得了一个表的READ LOCAL锁,该线程可以对表进行查询操作,但不能对表进行更新操作;其他的线程(session_2),虽然不能对表进行删除和更新操作,但却可以对该表进行并发插入操作,这里假设该表中间不存在空洞。

    可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行 OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。

    MyISAM的锁调度

    前面讲过,MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。那么,一个进程请求某个 MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢?答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前!这是因为MySQL认为写请求一般比读请求要重要。这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。这种情况有时可能会变得非常糟糕!幸好我们可以通过一些设置来调节MyISAM 的调度行为。

    • 通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。
    • 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。
    • 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。

    虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。
    另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。
    上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。

    InnoDB锁问题

    InnoDB与MyISAM的最大不同有两点:

    1. 一是支持事务(TRANSACTION);
    2. 二是采用了行级锁。

    行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。下面我们先介绍一点背景知识,然后详细讨论InnoDB的锁问题。

    背景知识

    1.事务(Transaction)及其ACID属性

    事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。

    • 原子性(Atomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
    • 一致性(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。
    • 隔离性(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
    • 持久性(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

    银行转帐就是事务的一个典型例子。

    2.并发事务处理带来的问题

    相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。

    • 更新丢失(Lost Update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题--最后的更新覆盖了由其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改副本的编辑人员覆盖另一个编辑人员所做的更改。如果在一个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题。
    • 脏读(Dirty Reads):一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象地叫做"脏读"。
    • 不可重复读(Non-Repeatable Reads):一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。
    • 幻读(Phantom Reads):一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。

    3.事务隔离级别

    在上面讲到的并发事务处理带来的问题中,“更新丢失”通常是应该完全避免的。但防止更新丢失,并不能单靠数据库事务控制器来解决,需要应用程序对要更新的数据加必要的锁来解决,因此,防止更新丢失应该是应用的责任。

    “脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。数据库实现事务隔离的方式,基本上可分为以下两种。

    一种是在读取数据前,对其加锁,阻止其他事务对数据进行修改。

    另一种是不用加任何锁,通过一定机制生成一个数据请求时间点的一致性数据快照(Snapshot),并用这个快照来提供一定级别(语句级或事务级)的一致性读取。从用户的角度来看,好像是数据库可以提供同一数据的多个版本,因此,这种技术叫做数据多版本并发控制(MultiVersion Concurrency Control,简称MVCC或MCC),也经常称为多版本数据库。

    数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

    为了解决“隔离”与“并发”的矛盾,ISO/ANSI SQL92定义了4个事务隔离级别,每个级别的隔离程度不同,允许出现的副作用也不同,应用可以根据自己的业务逻辑要求,通过选择不同的隔离级别来平衡 “隔离”与“并发”的矛盾。下表很好地概括了这4个隔离级别的特性。

    4种隔离级别比较

    读数据一致性及允许的并发副作用

    隔离级别 读数据一致性 脏读 不可重复读 幻读
    未提交读(Read uncommitted) 最低级别,只能保证不读取物理上损坏的数据
    已提交度(Read committed) 语句级
    可重复读(Repeatable read) 事务级
    可序列化(Serializable) 最高级别,事务级

    最后要说明的是:各具体数据库并不一定完全实现了上述4个隔离级别,例如,Oracle只提供Read committed和Serializable两个标准隔离级别,另外还提供自己定义的Read only隔离级别;SQL Server除支持上述ISO/ANSI SQL92定义的4个隔离级别外,还支持一个叫做“快照”的隔离级别,但严格来说它是一个用MVCC实现的Serializable隔离级别。MySQL 支持全部4个隔离级别,但在具体实现时,有一些特点,比如在一些隔离级别下是采用MVCC一致性读,但某些情况下又不是,这些内容在后面的章节中将会做进一步介绍。

    获取InnoDB行锁争用情况

    可以通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况:

    mysql> show status like ‘innodb_row_lock%‘;
    +-------------------------------+-------+
    | Variable_name                 | Value |
    +-------------------------------+-------+
    | InnoDB_row_lock_current_waits | 0     |
    | InnoDB_row_lock_time          | 0     |
    | InnoDB_row_lock_time_avg      | 0     |
    | InnoDB_row_lock_time_max      | 0     |
    | InnoDB_row_lock_waits         | 0     |
    +-------------------------------+-------+
    5 rows in set (0.01 sec)
    

    如果发现锁争用比较严重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,还可以通过设置InnoDB Monitors来进一步观察发生锁冲突的表、数据行等,并分析锁争用的原因。
    具体方法如下:

    mysql> CREATE TABLE innodb_monitor(a INT) ENGINE=INNODB;
    Query OK, 0 rows affected (0.14 sec)
    然后就可以用下面的语句来进行查看:
    mysql> Show innodb status\G;
    *************************** 1. row ***************************
      Type: InnoDB
      Name:
    Status:
    …
    …
    ------------
    TRANSACTIONS
    ------------
    Trx id counter 0 117472192
    Purge done for trx‘s n:o < 0 117472190 undo n:o < 0 0
    History list length 17
    Total number of lock structs in row lock hash table 0
    LIST OF TRANSACTIONS FOR EACH SESSION:
    ---TRANSACTION 0 117472185, not started, process no 11052, OS thread id 1158191456
    MySQL thread id 200610, query id 291197 localhost root
    ---TRANSACTION 0 117472183, not started, process no 11052, OS thread id 1158723936
    MySQL thread id 199285, query id 291199 localhost root
    Show innodb status
    …
    

    监视器可以通过发出下列语句来停止查看:

    mysql> DROP TABLE innodb_monitor;
    Query OK, 0 rows affected (0.05 sec)
    

    设置监视器后,在SHOW INNODB STATUS的显示内容中,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等,便于进行进一步的分析和问题的确定。打开监视器以后,默认情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以用户在确认问题原因之后,要记得删除监控表以关闭监视器,或者通过使用“--console”选项来启动服务器以关闭写日志文件。

    InnoDB的行锁模式及加锁方法

    InnoDB实现了以下两种类型的行锁。
    共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
    排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。
    意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
    意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。
    上述锁模式的兼容情况具体如下表所示。

    InnoDB行锁模式兼容性列表

    请求锁模式是否兼容 X IX S IS
    当前锁模式
    X 冲突 冲突 冲突 冲突
    IX 冲突 兼容 冲突 兼容
    S 冲突 冲突 兼容 兼容
    IS 冲突 兼容 兼容 兼容

    如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。
    意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。
    共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE。
    排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE。
    用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。
    在如下表所示的例子中,使用了SELECT ... IN SHARE MODE加锁后再更新记录,看看会出现什么情况,其中actor表的actor_id字段为主键。

    InnoDB存储引擎的共享锁例子

    补充例子

    InnoDB存储引擎的排他锁例子

    补充例子

    InnoDB行锁实现方式

    InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!

    在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。

    (1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。
    在如下所示的例子中,开始tab_no_index表没有索引:

    mysql> create table tab_no_index(id int,name varchar(10)) engine=innodb;
    Query OK, 0 rows affected (0.15 sec)
    mysql> insert into tab_no_index values(1,‘1‘),(2,‘2‘),(3,‘3‘),(4,‘4‘);
    Query OK, 4 rows affected (0.00 sec)
    Records: 4  Duplicates: 0  Warnings: 0
    

    InnoDB存储引擎的表在不使用索引时使用表锁例子

    session_1

    mysql> set autocommit=0;
    Query OK, 0 rows affected (0.00 sec)
    mysql> select * from tab_no_index where id = 1 ;
    +------+------+
    | id   | name |
    +------+------+
    | 1    | 1    |
    +------+------+
    1 row in set (0.00 sec)
    

    session_2

    mysql> set autocommit=0;
    Query OK, 0 rows affected (0.00 sec)
    mysql> select * from tab_no_index where id = 2 ;
    +------+------+
    | id   | name |
    +------+------+
    | 2    | 2    |
    +------+------+
    1 row in set (0.00 sec)
    

    session_ 1

    mysql> select * from tab_no_index where id = 1 for update;
    +------+------+
    | id   | name |
    +------+------+
    | 1    | 1    |
    +------+------+
    1 row in set (0.00 sec)
    

    session_2

    mysql> select * from tab_no_index where id = 2 for update;
    等待
    

    在如上表所示的例子中,看起来session_1只给一行加了排他锁,但session_2在请求其他行的排他锁时,却出现了锁等待!原因就是在没有索引的情况下,InnoDB只能使用表锁。

    InnoDB存储引擎的表在使用索引时使用行锁例子

    当我们给其增加一个索引后,InnoDB就只锁定了符合条件的行,如下表所示。
    创建tab_with_index表,id字段有普通索引:

    mysql> create table tab_with_index(id int,name varchar(10)) engine=innodb;
    Query OK, 0 rows affected (0.15 sec)
    mysql> alter table tab_with_index add index id(id);
    Query OK, 4 rows affected (0.24 sec)
    Records: 4  Duplicates: 0  Warnings: 0
    mysql>  INSERT INTO tab_with_index VALUES(1,'1'),(2,'2'),(3,'3'),(4,'4');
    

    运行上一个例子相同的sql,不会出现所等的情况。

    注意:由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。应用设计的时候要注意这一点。

    InnoDB存储引擎使用相同索引键的阻塞例子

    当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。

    session_1   
    mysql> set autocommit=0;
    Query OK, 0 rows affected (0.00 sec)
    mysql> select * from tab_with_index where id = 1 and name = ‘1‘ for update;
    +------+------+
    | id   | name |
    +------+------+
    | 1    | 1    |
    +------+------+
    1 row in set (0.00 sec)
    
    session_2
    mysql> set autocommit=0;
    Query OK, 0 rows affected (0.00 sec)
    
        
    虽然session_2访问的是和session_1不同的记录,但是因为使用了相同的索引,所以需要等待锁:
    mysql> select * from tab_with_index where id = 1 and name = ‘4‘ for update;
    等待
    

    InnoDB存储引擎的表使用不同索引的阻塞例子

    session_2

    mysql> set autocommit=0;
    Query OK, 0 rows affected (0.00 sec)
    

    session_1

    mysql> set autocommit=0;
    Query OK, 0 rows affected (0.00 sec)
    mysql> select * from tab_with_index where id = 1 for update;
    +------+------+
    | id   | name |
    +------+------+
    | 1    | 1    |
    | 1    | 4    |
    +------+------+
    2 rows in set (0.00 sec)
    

    session_2

    Session_2使用name的索引访问记录,因为记录没有被索引,所以可以获得锁:
    mysql> select * from tab_with_index where name = ‘2‘ for update;
    +------+------+
    | id   | name |
    +------+------+
    | 2    | 2    |
    +------+------+
    1 row in set (0.00 sec)
        
    由于访问的记录已经被session_1锁定,所以等待获得锁。:
    mysql> select * from tab_with_index where name = ‘4‘ for update;
    

    即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。

    在下面的例子中,检索值的数据类型与索引字段不同,虽然MySQL能够进行数据类型转换,但却不会使用索引,从而导致InnoDB使用表锁。通过用explain检查两条SQL的执行计划,我们可以清楚地看到了这一点。
    例子中tab_with_index表的name字段有索引,但是name字段是varchar类型的,如果where条件中不是和varchar类型进行比较,则会对name进行类型转换,而执行的全表扫描。

    mysql> alter table tab_no_index add index name(name);
    Query OK, 4 rows affected (8.06 sec)
    Records: 4  Duplicates: 0  Warnings: 0
    mysql> explain select * from tab_no_index where name = 1 \G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: tab_no_index
             type: ALL
    possible_keys: name
              key: NULL
          key_len: NULL
              ref: NULL
             rows: 4
            Extra: Using where
    1 row in set (0.03 sec)
    
    mysql> explain select * from tab_no_index where name = '1' \G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: tab_no_index
             type: ref
    possible_keys: name
              key: name
          key_len: 33
              ref: const
             rows: 1
            Extra: Using index condition
    1 row in set (0.02 sec)
    

    参考

    MySQL学习之——锁(行锁、表锁、页锁、乐观锁、悲观锁等)
    Mysql数据库锁定机制详细介绍
    MySQL行级锁、表级锁、页级锁详细介绍

    相关文章

      网友评论

        本文标题:[Mysql]-锁

        本文链接:https://www.haomeiwen.com/subject/qoknwttx.html