QUANTAXIS 升级日志

作者: yutiansut | 来源:发表于2017-08-15 01:00 被阅读92次

    升级日志

     ...................................................................................................................... 
     ..########.....##........##..........##.........####........##...##########.......##......##......###...##.....######.. 
     .##......## ...##........##.........####........##.##.......##.......##..........###.......##....##.....##...##.....##. 
     ##........##...##........##........##.##........##..##......##.......##.........####........#...##......##...##......## 
     ##........##...##........##.......##...##.......##...##.....##.......##.........##.##.......##.##.......##....##....... 
     ##........##...##........##......##.....##......##....##....##.......##........##..###.......###........##.....##...... 
     ##........##...##........##......##......##.....##.....##...##.......##.......##....##.......###........##......###.... 
     ##........##...##........##.....##........##....##......##..##.......##......##......##.....##.##.......##........##... 
     ##........##...##........##....#############....##.......##.##.......##.....###########.....##..##......##.........##.. 
     ###.......##...##........##...##...........##...##.......##.##.......##....##.........##...##...##......##...##.....##. 
     .##......###....##......###..##.............##..##........####.......##...##..........##..###....##.....##....##.....## 
     ..#########......########...##..............###.##..........##.......##..##............##.##......##....##.....##....## 
     ........#####.....................................................................................................####.. 
     ...................................................................................................................... 
     ..........................Copyright..yutiansut..2017......QUANTITATIVE FINANCIAL FRAMEWORK.............................. 
     ...................................................................................................................... 
     ........................................................................................................................ 
    

    最新版本 :0.4.0-beta

    Github workersGithub workers
    GitHub starsGitHub stars
    GitHub forksGitHub forks

    作者: yutiansut

    新的功能:

    1.1 组合回测支持

    2017/6/13
    在之前的版本里,quantaxis是通过穿透性测试去做unit测试.然后对于unit结果进行组合.这种构建组合的方式虽然行之有效,但是在一些情境下会比较笨重.

    好比如,你只是想对于特定的股票(如小市值股票)的一些方法进行回测分析,由于这些股票组合是固定的,所以本来只需要进行一次回测,但是在穿透性测试下要进行n次回测并重新组合

    新的模式在原有基础上推出了基于组合的unit测试,在固定组合的时候,只需要进行一个测试,就可以得到结果

    1.2 多种交易状态支持

    2017/6/14
    之前的版本中,quantaxis只支持单次持仓,及(不能进行买入-继续买入的状态)

    0.3.9-gamma进行了一定的修改和优化,目前支持了多次连续买入和卖出的交易状态,并通过order_id和trade_id来锁定买卖的对应关系

    1.3 实盘交易的支持

    2017/6/14
    通过tradex的接口,quantaxis实现了一套实盘的解决方案,在quantaxistrade文件夹下,具体详见quantaxis_trade

    1.4 更加方便的数据更新接口

    2017/6/15

    
    import QUANTAXIS as QA
    
    QA.QA_SU_update_stock_day(client=QA.QA_Setting.client,engine='ts')
    

    1.5 手续费/滑点

    2017/6/16

    重写了交易撮合引擎,区分不同市场/状态,同时对于股票交易量的区分有了更加接近实盘的表现

    1. 对于滑点的设置:

      • 如果报价单的购买数量小于1/16当日成交量

      按正常报价进行交易

      • 如果报价单的购买数量在1/16-1/8 当日成交量, 成交价会进行一个浮动:

      买入价=mean(max{o,c},h) 卖出价=mean(min{o,c},l)

      • 如果报价单的数量在1/8当日成交量以上,则只能成交1/8的当日成交量

      买入价=high 卖出价=low 交易数量=1/8当日成交量

    1. 对于手续费的设置:

      买入的时候无需付费,卖出的时候,按成交额收万分之五的手续费,并在现金中扣除

    1.6 QUANTAXIS-Log 优化

    2017/6/15

    
    ipython
    
    In [1]: import QUANTAXIS as QA
    
    QUANTAXIS>> start QUANTAXIS
    
    QUANTAXIS>> ip:127.0.0.1   port:27017
    
    QUANTAXIS>> Welcome to QUANTAXIS, the Version is 0.3.9-beta-dev20
    

    1.7 重构了回测流程,简化回测设置步骤

    2017/6/21

    在quantaxis的backtest的基础上,对于回测的流程和模式进行了重构,通过ini的读取以及函数式编程的方法,把回测简化到一个ini+策略即可进行回测的步骤

    具体参见 test/new test 文件夹

    1.8 对于QACMD进行改进

    2017/6/26

    对于QACMD的模式进行了修改,现在直接在命令行中输入quantaxis即可进入quantaxis的交互式界面进行操作

    1.9 新增QADataStruct模块

    2017/6/27

    datastruct将在未来对于不同的场景下的数据进行重构和规范化处理,目前新增了基础数据类,机器学习类,ohlc价格序列类等

    1.10 对于backtest的一个bug修改:

    2017/6/27

    修改了购买的时候的方式,其中mean的报价方式改变为当前可用资金/股票列表数量的资金分配方式

    修改了对于cash小于买入报单总量的修正,以免出现在不能买入的时候的误操作

    1.11 对于SU中心的修改

    修改并优化了对于QUANTAXIS backtest的回测过程的资金曲线的存储过程,增加了存为csv的方法,并优化和修正了存储时的结果

    1.12 增加了界面的logo以及log的logo

    MarkdownMarkdown
    MarkdownMarkdown

    1.13 增加一个标准化的QUANTAXIS事件队列(0.3.9)

    2017/6/30-2017/7/2,2017/7/4

    引入方式:

    from QUANTAXIS import QA_Queue
    

    使用方式:

    首先需要引入一个标准化的队列:

    from six.moves import queue
    import queue # python3
    import Queue # python2 
    
    qa=queue.Queue()# 你可以自定义队列的大小
    #启动一个事件队列:
    qa_event=QA_Queue(qa)
    # 往事件引擎里发事件,需要有函数
    """
    标准的事件是:
    {'type':'xxx','fn':'func'}
    """
    qa.put({'type':'xxx','fn':'func'})
    

    事件引擎会默认一直监听这个队列
    2017/7/4 update 重新优化了这个事件引擎 参见test/test_job_queue.py

    13:35:45 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:45 QUANTAXIS>>> job--id:0
    13:35:46 QUANTAXIS>>> job--id:1
    13:35:46 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 2 tasks to do
    13:35:46 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 1 tasks to do
    13:35:46 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:47 QUANTAXIS>>> job--id:2
    13:35:47 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 1 tasks to do
    13:35:47 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:47 QUANTAXIS>>> job--id:3
    13:35:48 QUANTAXIS>>> job--id:4
    13:35:48 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 2 tasks to do
    13:35:48 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 1 tasks to do
    13:35:48 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:49 QUANTAXIS>>> job--id:5
    13:35:49 QUANTAXIS>>> job--id:6
    13:35:49 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 2 tasks to do
    13:35:49 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 1 tasks to do
    13:35:49 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:50 QUANTAXIS>>> job--id:7
    13:35:50 QUANTAXIS>>> job--id:8
    13:35:50 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 2 tasks to do
    13:35:50 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 1 tasks to do
    13:35:50 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:51 QUANTAXIS>>> job--id:9
    13:35:51 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 1 tasks to do
    13:35:51 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:52 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:53 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:54 QUANTAXIS>>> job--id:1
    13:35:54 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>: There are still 1 tasks to do
    13:35:54 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:55 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:56 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:57 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:58 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:35:59 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:36:00 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    13:36:01 QUANTAXIS>>> From Engine <QA_Queue(EVENT ENGINE, started 12488)>Engine will waiting for new task ...
    
    
    

    1.14 增加了两个时间选择的api(0.3.9)

    2017/7/3

    • QUANTAXIS.QAUtil.QADate.QA_select_hours

    • QUANTAXIS.QAUtil.QADate.QA_select_min

    引入方式

    from QUANTAXIS.QAUtil import QA_select_hours,QA_select_min
    

    1.15 增加了一个事件订阅的方式QA.QA_Event(0.3.9):

    2017/7/3

    
    from QUANTAXIS.QATask import QA_Event
    
    class MyEvent(QA_Event):
        ASK = "askMyEvent"
        RESPOND = "respondMyEvent"
    
    class WhoAsk(object):
        def __init__(self, event_dispatcher):
            self.event_dispatcher = event_dispatcher
            self.event_dispatcher.add_event_listener(
                MyEvent.RESPOND, self.on_answer_event
            )
    
        def ask(self):
            print("who are listener to me?")
            self.event_dispatcher.dispatch_event(MyEvent(MyEvent.ASK, self))
    
        def on_answer_event(self, event):
            print("receive event %s", event.data)
    
    class WhoRespond(object):
        def __init__(self, event_dispatcher):
            self.event_dispatcher = event_dispatcher
            self.event_dispatcher.add_event_listener(
                MyEvent.ASK, self.on_ask_event)
    
        def on_ask_event(self, event):
            self.event_dispatcher.dispatch_event(
                MyEvent(MyEvent.RESPOND, self))
    
    dispatcher = QA_EventDispatcher()
    who_ask = WhoAsk(dispatcher)
    who_responde1 = WhoRespond(dispatcher)
    who_responde2 = WhoRespond(dispatcher)
    
    # WhoAsk ask
    who_ask.ask()
    

    result:

    who are listener to me?
    receive event %s <__main__.WhoRespond object at 0x02361D50>
    receive event %s <__main__.WhoRespond object at 0x02361DB0>
    

    1.16 修改了CLI中的创建example内容(0.3.9):

    2017/7/3

    现在在命令行中输入QUANTAXIS:

    λ  quantaxis
    QUANTAXIS>> start QUANTAXIS
    QUANTAXIS>> ip:127.0.0.1   port:27017
    QUANTAXIS>> From Engine <_MainThread(MainThread, started 19040)>2017-07-03 14:22:08.218800
    QUANTAXIS>> FROM QUANTAXIS SYS== now running 3 threads
    QUANTAXIS>> Welcome to QUANTAXIS, the Version is 0.3.9-beta-dev29
    
    
    QUANTAXIS> examples
    QUANTAXIS>> QUANTAXIS example
    QUANTAXIS>> successfully generate a example strategy inC:\Users\yutiansut\strategy\A05-CCI
    QUANTAXIS> exit
    
    λ  ls
    
    
        目录: C:\Users\yutiansut\strategy\A05-CCI
    
    
    Mode                LastWriteTime     Length Name
    ----                -------------     ------ ----
    -a---          2017/7/3     14:22        358 backtest.ini
    -a---          2017/7/3     14:22        905 backtest.py
    -a---          2017/7/3     14:22       2738 quantaxis-2017-07-03-14-22-08-.log
    
    

    1.17 增加了一个带参数的延时装饰器

    2017/7/4

    QUANTAXIS.QAUtil.QADate.QA_util_time_delay()

    使用方式

    from QUANTAXIS import QA_util_time_dalay
    
    
    @QA_util_time_dalay(2)
    #延时2秒
    def pp():
        print(1)
    
    
    

    1.18 web 部分的改进

    2017/7/10

    web部分,修改了页面布局和回测的显示方式

    去除了之前单个股票和行情的对比

    改成了资金曲线和组合分析的方式

    1.19 回测部分的最后一天停牌情况的处理

    2017/7/10

    _remains_day=0
    while __message['header']['status']==500:
        #停牌状态,这个时候按停牌的最后一天计算价值(假设平仓)
        
        __last_bid['date'] = self.trade_list[self.end_real_id-_remains_day]
        _remains_day+=1
        __message = self.market.receive_bid(__last_bid, self.setting.client)
    
        #直到市场不是为0状态位置,停止前推日期
    

    在原来的代码里,组合的最后一天需要被平仓,而如果恰巧这一天停牌:(600127,601001 在2017/6/30都是停牌状态)

    那么就会一直陷入市场返回500错误,而回测框架一直在组装报价,来回轮询,陷入死循环

    现在加入了对于市场的数据的检测,如果是500状态,则会将交易日向前递推一天,重新组装报价,直到停牌的最后一天为止

    1.20 新增一个时间接口 QA_util_time_now()

    2017/7/10

    返回的就是datetime.datetime.now()的结果

    1.21 新增一个QAWeb的接口

    2017/7/10

    可以在命令行直接输入 quantaxis_web 来启动这个服务器,端口在5050(带socket)

    1.22 新增一个QACSV的接口

    2017/7/13

    现在可以便捷的吧数据存成csv格式:

    import QUANTAXIS as QA
    
    data=['1',2,'x','t']
    QA.QA_util_save_csv(data,'test')
    
    

    1.23 新增一个交易时间的变量

    2017/7/13

    from QUANTAXIS import trade_date_sse
    
    print(trade_date_sse)
    

    1.24 新增一个k线接口(通达信)

    2017/7/13

    import QUANTAXIS as QA
    QA.QA_fetch_get_stock_day('tdx','601801','2017-01-01','2017-07-01')
    
    
    Out[3]:
          open  close   high    low       vol       amount  year  month  day  \
    0    14.39  14.70  14.76  14.36  164426.0  239606672.0  2016     12   14
    1    14.55  14.99  15.10  14.55  188986.0  281594560.0  2016     12   15
    2    15.03  16.00  16.11  14.86  180712.0  281681280.0  2016     12   16
    3    15.93  16.79  17.05  15.93  207338.0  345849056.0  2016     12   19
    4    16.87  16.80  16.87  16.39   81613.0  135869952.0  2016     12   20
    5    16.90  16.88  17.12  16.66   98858.0  166289104.0  2016     12   21
    6    16.95  16.61  16.96  16.28   92686.0  153868304.0  2016     12   22
    7    16.58  16.51  17.05  16.03   89121.0  147409888.0  2016     12   23
    8    16.59  17.30  17.65  16.26  226506.0  387817440.0  2016     12   26
    9    17.35  17.49  17.62  17.14  106783.0  186348288.0  2016     12   27
    10   17.56  17.89  17.96  17.40  181507.0  321431424.0  2016     12   28
    11   17.69  17.59  17.84  17.35  109785.0  193161984.0  2016     12   29
    12   17.58  17.57  17.90  17.24  142565.0  251420576.0  2016     12   30
    13   17.60  17.45  17.60  17.15  106347.0  185482976.0  2017      1    3
    14   17.40  17.00  17.40  16.41  204781.0  344751936.0  2017      1    4
    15   16.85  16.86  17.00  16.55  102506.0  171934160.0  2017      1    5
    16   16.89  16.90  17.13  16.73   77188.0  130475344.0  2017      1    6
    17   16.86  16.81  17.10  16.76   77502.0  131223856.0  2017      1    9
    18   16.81  17.40  17.53  16.10  193194.0  325042304.0  2017      1   10
    19   17.20  17.68  17.84  17.10  368129.0  651724672.0  2017      1   11
    20   17.68  17.96  18.24  17.61  408000.0  735998016.0  2017      1   12
    21   17.96  18.31  18.84  17.80  337911.0  619458496.0  2017      1   13
    22   18.30  18.56  18.66  17.36  284054.0  518380576.0  2017      1   16
    23   18.39  18.57  19.00  17.60  263141.0  491844896.0  2017      1   17
    24   18.23  17.99  18.80  17.90   95064.0  173332688.0  2017      1   18
    25   17.81  18.24  18.39  17.80   49353.0   89376280.0  2017      1   19
    26   18.32  18.46  18.69  18.19  143792.0  265606432.0  2017      1   20
    27   18.28  18.84  19.00  18.26  228183.0  427935936.0  2017      1   23
    28   18.80  19.00  19.10  18.50  113616.0  214593088.0  2017      1   24
    29   19.00  18.78  19.14  18.72  265691.0  504179328.0  2017      1   25
    ..     ...    ...    ...    ...       ...          ...   ...    ...  ...
    89   12.73  12.98  13.16  12.68  176499.0  228946128.0  2017      5   17
    90   12.78  13.26  13.27  12.71  145098.0  189804288.0  2017      5   18
    91   13.20  13.09  13.33  13.08   78134.0  102854576.0  2017      5   19
    92   13.15  12.63  13.18  12.50   96282.0  123843520.0  2017      5   22
    93   12.64  12.76  13.16  12.53  111309.0  141901152.0  2017      5   23
    94   12.74  13.17  13.19  12.62  104595.0  136030272.0  2017      5   25
    95   13.12  13.09  13.25  13.08   69110.0   90972200.0  2017      5   26
    96   13.25  13.42  13.44  13.18  110524.0  147250112.0  2017      5   31
    97   13.43  13.26  13.46  13.07   88958.0  117311632.0  2017      6    1
    98   13.09  12.91  13.09  12.70   91351.0  117710656.0  2017      6    2
    99   12.98  12.83  12.98  12.74  110453.0  141482496.0  2017      6    5
    100  12.77  12.83  12.85  12.68   62182.0   79344728.0  2017      6    6
    101  12.80  13.26  13.30  12.74  144478.0  188284080.0  2017      6    7
    102  13.19  13.13  13.33  13.09  101171.0  133169712.0  2017      6    8
    103  13.12  13.04  13.15  12.96   87196.0  113572160.0  2017      6    9
    104  13.00  12.76  13.00  12.74   86848.0  111470976.0  2017      6   12
    105  12.62  12.96  13.02  12.60   67389.0   87066136.0  2017      6   13
    106  13.00  12.75  13.00  12.72   62876.0   80648232.0  2017      6   14
    107  12.74  12.85  12.95  12.70   71232.0   91385064.0  2017      6   15
    108  12.87  12.71  12.87  12.67   59412.0   75701632.0  2017      6   16
    109  12.72  12.90  12.92  12.69   77521.0   98993784.0  2017      6   19
    110  12.86  13.21  13.24  12.86  180431.0  237042944.0  2017      6   20
    111  13.28  13.21  13.32  13.00  117902.0  154974640.0  2017      6   21
    112  13.20  13.37  13.58  13.15  191968.0  256520880.0  2017      6   22
    113  13.28  13.21  13.29  12.99  114182.0  150111952.0  2017      6   23
    114  13.22  13.71  13.73  13.16  186511.0  252084368.0  2017      6   26
    115  13.74  13.78  13.81  13.54  135037.0  184420320.0  2017      6   27
    116  13.73  13.98  14.05  13.56  242043.0  335440128.0  2017      6   28
    117  13.94  13.96  14.01  13.84  178812.0  248913488.0  2017      6   29
    118  13.89  13.82  13.94  13.71   83402.0  115219784.0  2017      6   30
    
         hour  minute          datetime
    0      15       0  2016-12-14 15:00
    1      15       0  2016-12-15 15:00
    2      15       0  2016-12-16 15:00
    3      15       0  2016-12-19 15:00
    4      15       0  2016-12-20 15:00
    5      15       0  2016-12-21 15:00
    6      15       0  2016-12-22 15:00
    7      15       0  2016-12-23 15:00
    8      15       0  2016-12-26 15:00
    9      15       0  2016-12-27 15:00
    10     15       0  2016-12-28 15:00
    11     15       0  2016-12-29 15:00
    12     15       0  2016-12-30 15:00
    13     15       0  2017-01-03 15:00
    14     15       0  2017-01-04 15:00
    15     15       0  2017-01-05 15:00
    16     15       0  2017-01-06 15:00
    17     15       0  2017-01-09 15:00
    18     15       0  2017-01-10 15:00
    19     15       0  2017-01-11 15:00
    20     15       0  2017-01-12 15:00
    21     15       0  2017-01-13 15:00
    22     15       0  2017-01-16 15:00
    23     15       0  2017-01-17 15:00
    24     15       0  2017-01-18 15:00
    25     15       0  2017-01-19 15:00
    26     15       0  2017-01-20 15:00
    27     15       0  2017-01-23 15:00
    28     15       0  2017-01-24 15:00
    29     15       0  2017-01-25 15:00
    ..    ...     ...               ...
    89     15       0  2017-05-17 15:00
    90     15       0  2017-05-18 15:00
    91     15       0  2017-05-19 15:00
    92     15       0  2017-05-22 15:00
    93     15       0  2017-05-23 15:00
    94     15       0  2017-05-25 15:00
    95     15       0  2017-05-26 15:00
    96     15       0  2017-05-31 15:00
    97     15       0  2017-06-01 15:00
    98     15       0  2017-06-02 15:00
    99     15       0  2017-06-05 15:00
    100    15       0  2017-06-06 15:00
    101    15       0  2017-06-07 15:00
    102    15       0  2017-06-08 15:00
    103    15       0  2017-06-09 15:00
    104    15       0  2017-06-12 15:00
    105    15       0  2017-06-13 15:00
    106    15       0  2017-06-14 15:00
    107    15       0  2017-06-15 15:00
    108    15       0  2017-06-16 15:00
    109    15       0  2017-06-19 15:00
    110    15       0  2017-06-20 15:00
    111    15       0  2017-06-21 15:00
    112    15       0  2017-06-22 15:00
    113    15       0  2017-06-23 15:00
    114    15       0  2017-06-26 15:00
    115    15       0  2017-06-27 15:00
    116    15       0  2017-06-28 15:00
    117    15       0  2017-06-29 15:00
    118    15       0  2017-06-30 15:00
    
    [119 rows x 12 columns]
    
    

    1.25 在回测的时候,增加一个回测内全局变量

    2017/7/14

    现在的回测加载的函数句柄里面会增加一个叫info的句柄,这个句柄在引擎里面是交易日循环外部的变量,可以存贮一些连续周期信息,和一些点位信息

    在quantaxis/test/new test的strategy里面可以看到改动

    1.26 新增一个创建多维list的函数

    2017/7/14

    在QUANTAXIS.QAUtil中, 接口的名称是 QA_util_multi_demension_list(row_,col_)

    如果需要创建一个[[],[]], 那就用 row_=2,col=0
    其他时候,返回的都是[[None]]

    import QUANTAXIS as QA
    QA.QAUtil.QA_util_multi_demension_list(3,0)
    QA.QAUtil.QA_util_multi_demension_list(3,3)
    
    
    
    [[], [], []]
    [[None, None, None], [None, None, None], [None, None, None]]
    

    1.27 修改了一个QABacktest的传参, 现在在策略中,需要指定买卖状态

    2017/7/19

    现在 QUANTAXIS在接受策略的传参的时候,需要指定买卖状态

    在开始的时候,quantaxis使用的是if_buy和账户状态来判断是否买卖的

    • 账户持仓, if_buy=1 视为卖出
    • 账户空仓, if_buy=1 视为买入

    买卖行为和账户状态相关联对于买卖的行为有很大的限制,现在对于这个行为和账户持仓状态进行了解耦

    同时,为了兼容性,如果策略并没有给出if_buy或者if_sell,则会将其初始化为0,及不操作

    以下是改动后的源代码

        def __QA_backtest_excute_bid(self, __result,  __date, __hold, __code, __amount):
            """
            这里是处理报价的逻辑部分
            2017/7/19 修改
    
            __result传进来的变量重新区分: 现在需要有 if_buy, if_sell
            因为需要对于: 持仓状态下继续购买进行进一步的支持*简单的情形就是  浮盈加仓
    
            if_buy, if_sell都需要传入
    
            现在的 买卖状态 和 持仓状态 是解耦的
            """
    
            # 为了兼容性考虑,我们会在开始的时候检查是否有这些变量
            if 'if_buy' not in list(__result.keys()):
                __result['if_buy'] = 0
    
            if 'if_sell' not in list(__result.keys()):
                __result['if_sell'] = 0
    
            self.__QA_backtest_set_bid_model()
            if self.bid.bid['bid_model'] == 'strategy':
                __bid_price = __result['price']
            else:
                __bid_price = self.bid.bid['price']
    
            __bid = self.bid.bid
    
            __bid['order_id'] = str(random.random())
            __bid['user'] = self.setting.QA_setting_user_name
            __bid['strategy'] = self.strategy_name
            __bid['code'] = __code
            __bid['date'] = __date
            __bid['price'] = __bid_price
            __bid['amount'], __bid['amount_model'] = self.__QA_bid_amount(
                __result['amount'], __amount)
    
            if __result['if_buy'] == 1:
                # 这是买入的情况
                __bid['towards'] = 1
                __message = self.market.receive_bid(
                    __bid, self.setting.client)
    
                if float(self.account.message['body']['account']['cash'][-1]) > \
                        float(__message['body']['bid']['price']) * \
                        float(__message['body']['bid']['amount']):
                        # 这里是买入资金充足的情况
                        # 不去考虑
                    pass
                else:
                    # 如果买入资金不充足,则按照可用资金去买入
                    __message['body']['bid']['amount'] = int(float(
                        self.account.message['body']['account']['cash'][-1]) / float(
                            float(str(__message['body']['bid']['price'])[0:5]) * 100)) * 100
    
                if __message['body']['bid']['amount'] > 0:
                    # 这个判断是为了 如果买入资金不充足,所以买入报了一个0量单的情况
                    #如果买入量>0, 才判断为成功交易
                    self.account.QA_account_receive_deal(__message)
    
            elif __result['if_buy'] == 0:
                # 如果买入状态为0,则不进行任何买入操作
                pass
    
            # 下面是卖出操作,这里在卖出前需要考虑一个是否有仓位的问题:
            # 因为在股票中是不允许卖空操作的,所以这里是股票的交易引擎和期货的交易引擎的不同所在
    
            if __result['if_sell'] == 1 and __hold == 1:
                __bid['towards'] = -1
                __message = self.market.receive_bid(
                    __bid, self.setting.client)
    
                self.account.QA_account_receive_deal(
                    __message)
    

    1.28 对于backtest的加载的外部函数的接口进行修改

    2017/7/20

    对于backtest的加载的外部策略,现在暂时有以下三个句柄

    • on_start
    • strategy
    • on_end

    其中,on_start/on_end这两个句柄可有可无, strategy句柄是必须要有的

    1.29 修改了QA_Query 里返回的数组格式

    2017/7/21

    def QA_fetch_stock_day(code, startDate, endDate, collections=QA_Setting.client.quantaxis.stock_day, type_='numpy'):
        # print(datetime.datetime.now())
        startDate = str(startDate)[0:10]
        endDate = str(endDate)[0:10]
    
        if QA_util_date_valid(endDate) == True:
    
            list_a = []
    
            for item in collections.find({
                'code': str(code)[0:6], "date_stamp": {
                    "$lte": QA_util_date_stamp(endDate),
                    "$gte": QA_util_date_stamp(startDate)}}):
                list_a.append([str(item['code']), float(item['open']), float(item['high']), float(
                    item['low']), float(item['close']), float(item['volume']), item['date'], float(item['turnover'])])
            ## 多种数据格式
            if type_ == 'numpy':
                data = numpy.asarray(list_a)
            elif type_ == 'list':
                data = list_a
            elif type_ == 'pandas':
                data = DataFrame(list_a, columns=[
                                 'code', 'open', 'high', 'low', 'close', 'volume', 'date', 'turnover'])
            return data
        else:
            QA_util_log_info('something wrong with date')
    
    

    现在可以通过QA_fetch_stock_day里面选择是返回list,numpy还是dataframe. 为了兼容性考虑,默认依然是numpy

    1.30 修改了QA_util_save_csv的模式

    2017/07/21

    def QA_util_save_csv(data: list, name: str, column=None, location=None):
        # 重写了一下保存的模式
        
        assert isinstance(data, list)
        if location == None:
            path = './' + str(name) + '.csv'
        else:
            path = location + str(name) + '.csv'
        with open(path, 'w', newline='') as f:
            csvwriter = csv.writer(f)
            if column == 'None':
                pass
            else:
                csvwriter.writerow(column)
            for item in data:
                csvwriter.writerow(item)
    
    

    示例:

    
    import QUANTAXIS as QA
    
    QA.QA_util_save_csv(QA.QA_fetch_stock_day('000001','2017-01-01','2017-07-01','list'),'000001')
    
    000001,9.11,9.18,9.09,9.16,459840.47,2017-01-03,0.31
    000001,9.15,9.18,9.14,9.16,449329.53,2017-01-04,0.31
    000001,9.17,9.18,9.15,9.17,344372.91,2017-01-05,0.24
    000001,9.17,9.17,9.11,9.13,358154.19,2017-01-06,0.24
    000001,9.13,9.17,9.11,9.15,361081.56,2017-01-09,0.21
    000001,9.15,9.16,9.14,9.15,241053.95,2017-01-10,0.14
    000001,9.14,9.17,9.13,9.14,303430.88,2017-01-11,0.18
    000001,9.13,9.17,9.13,9.15,428006.75,2017-01-12,0.25
    000001,9.14,9.19,9.12,9.16,434301.38,2017-01-13,0.26
    000001,9.15,9.16,9.07,9.14,683165.81,2017-01-16,0.4
    000001,9.12,9.16,9.1,9.15,545552.38,2017-01-17,0.32
    000001,9.14,9.19,9.13,9.17,574269.38,2017-01-18,0.34
    000001,9.15,9.24,9.15,9.18,437712.88,2017-01-19,0.26
    000001,9.17,9.23,9.17,9.22,393328.56,2017-01-20,0.23
    000001,9.22,9.26,9.2,9.22,420299.31,2017-01-23,0.25
    000001,9.23,9.28,9.2,9.27,470244.09,2017-01-24,0.28
    000001,9.27,9.28,9.25,9.26,304401.97,2017-01-25,0.18
    000001,9.27,9.34,9.26,9.33,420712.56,2017-01-26,0.25
    000001,9.45,10.26,9.33,10.26,19345.0,2017-02-02,0.01
    000001,9.34,9.36,9.23,9.26,315472.25,2017-02-03,0.19
    000001,9.26,9.32,9.26,9.31,516786.12,2017-02-06,0.31
    000001,9.31,9.32,9.27,9.3,396884.97,2017-02-07,0.23
    ...........
    

    1.31 通达信5分钟线解析保存

    2017/7/23

    首先要下载:

    • 深圳5分钟线

    http://www.tdx.com.cn/products/data/data/vipdoc/sz5fz.zip

    • 上证5分钟线

    http://www.tdx.com.cn/products/data/data/vipdoc/sh5fz.zip

    然后解压到一个目录里

    
    import QUANTAXIS as QA
    
    QA.QA_SU_save_stock_min_5('你解压好的目录')
    
    
    #例如 QA.QA_SU_save_stock_min_5('C:\\users\\yutiansut\\desktop\\sh5fz')
    
    
    In [2]: QA.QA_SU_save_stock_min_5('C:\\users\\yutiansut\\desktop\\sz5fz')
    QUANTAXIS>> Now_saving 000001's 5 min tick
    QUANTAXIS>> Now_saving 000002's 5 min tick
    QUANTAXIS>> Now_saving 000004's 5 min tick
    QUANTAXIS>> Now_saving 000005's 5 min tick
    QUANTAXIS>> Now_saving 000006's 5 min tick
    QUANTAXIS>> Now_saving 000007's 5 min tick
    QUANTAXIS>> Now_saving 000008's 5 min tick
    QUANTAXIS>> Now_saving 000009's 5 min tick
    QUANTAXIS>> Now_saving 000010's 5 min tick
    QUANTAXIS>> Now_saving 000011's 5 min tick
    QUANTAXIS>> Now_saving 000012's 5 min tick
    QUANTAXIS>> Now_saving 000014's 5 min tick
    QUANTAXIS>> Now_saving 000016's 5 min tick
    QUANTAXIS>> Now_saving 000017's 5 min tick
    QUANTAXIS>> Now_saving 000018's 5 min tick
    QUANTAXIS>> Now_saving 000019's 5 min tick
    QUANTAXIS>> Now_saving 000020's 5 min tick
    QUANTAXIS>> Now_saving 000021's 5 min tick
    QUANTAXIS>> Now_saving 000022's 5 min tick
    QUANTAXIS>> Now_saving 000023's 5 min tick
    QUANTAXIS>> Now_saving 000024's 5 min tick
    QUANTAXIS>> Now_saving 000025's 5 min tick
    QUANTAXIS>> Now_saving 000026's 5 min tick
    QUANTAXIS>> Now_saving 000027's 5 min tick
    QUANTAXIS>> Now_saving 000028's 5 min tick
    

    1.32 获取指数k线的api更新

    2017/7/24

    QA_fetch_index_day(code, startDate, endDate,type_='numpy' ,collections=QA_Setting.client.quantaxis.stock_day)
    
    

    一般而言,直接使用QA_fetch_index_day(code, startDate, endDate)就可以了

    1.33 QA_util更新 QA_util_time_stamp

    2017/7/24

    QA_util_time_stamp用于将时间转化成时间戳

    import QUANTAXIS as QA
    QA.QA_util_time_stamp('2017-01-01 10:25:08')
    
    

    1.34 QABACKTEST回测引擎更新

    2017/8/1-8/4

    重大更新:
    现在大量使用@装饰器来扩展回测引擎的能力

    
    import QUANTAXIS as QA
    from QUANTAXIS import QA_Backtest_stock_day as QB
    
    
    """
    写在前面:
    ===============QUANTAXIS BACKTEST STOCK_DAY中的变量
    常量:
    QB.account.message  当前账户消息
    QB.account.cash  当前可用资金
    QB.account.hold  当前账户持仓
    QB.account.history  当前账户的历史交易记录
    QB.account.assets 当前账户总资产
    QB.account.detail 当前账户的交易对账单
    QB.account.init_assest 账户的最初资金
    
    
    
    QB.strategy_stock_list 回测初始化的时候  输入的一个回测标的
    QB.strategy_start_date 回测的开始时间
    QB.strategy_end_date  回测的结束时间
    
    
    QB.today  在策略里面代表策略执行时的日期
    
    QB.benchmark_code  策略业绩评价的对照行情
    
    
    
    
    函数:
    获取市场(基于gap)行情:
    QB.QA_backtest_get_market_data(QB,code,QB.today)
    获取市场自定义时间段行情:
    QA.QA_fetch_stock_day(code,start,end,model)
    
    
    报单:
    QB.QA_backtest_send_order(QB, code,amount,towards,order: dict)
    
    order有三种方式:
    1.限价成交 order['bid_model']=0或者l,L
      注意: 限价成交需要给出价格:
      order['price']=xxxx
    
    2.市价成交 order['bid_model']=1或者m,M,market,Market
    3.严格成交模式 order['bid_model']=2或者s,S
        及 买入按bar的最高价成交 卖出按bar的最低价成交
    
    查询当前一只股票的持仓量
    QB.QA_backtest_hold_amount(QB,code)
    
    
    """
    
    
    @QB.backtest_init
    def init():
        #
        QB.setting.QA_util_sql_mongo_ip='192.168.4.189'
    
        QB.account.init_assest=2500000
        QB.benchmark_code='hs300'
    
        QB.strategy_stock_list=['000001','000002','600010','601801','603111']
        QB.strategy_start_date='2017-03-01'
        QB.strategy_end_date='2017-07-01'
    
    @QB.before_backtest
    def before_backtest():
        global risk_position
        QA.QA_util_log_info(QB.account.message)
        
        
        
    @QB.load_strategy
    def strategy():
        print(QB.account.message)
        print(QB.account.cash)
        input()
        for item in QB.strategy_stock_list:
            if QB.QA_backtest_hold_amount(QB,item)==0:
            #获取数据的第一种办法[这个是根据回测时制定的股票列表初始化的数据]
                QB.QA_backtest_send_order(QB,item,10000,1,{'bid_model':'Market'})
    
        
            else:
                print(QB.QA_backtest_hold_amount(QB,item))
                QB.QA_backtest_send_order(QB,item,10000,-1,{'bid_model':'Market'})
        
    @QB.end_backtest
    def after_backtest():
        pass
    

    1.35 QA_fetch_stock_list 函数更新

    一个获取股票代码的函数

    
    import QUANTAXIS as QA
    QA.QA_fetch_stock_list()
    
    
    # 自定义数据库的模式
    import pymongo
    QA.QA_fetch_stock_list(pymongo.MongoClient(ip='192.168.4.189',port=27017).quantaxis.stock_list)
    
    

    1.36 回测框架新增一个一键平仓函数

    2017/8/6

    一键平仓:
    QB.QA_backtest_sell_all(QB)

    1.37 回测框架的报价函数增加回调

    2017/8/6

    现在回测的报价函数增加了回调

    1.38 更新了save/update的方式

    2017/8/7-2017/8/8

    1. update的时候之前出现了 如果该股票尚未上市,数据库无数据的时候 出现负索引的问题 已经解决
    2. 把之前写在easy里面的代码 写进了quantaxis cli中
    quantaxis> save
    
    quantaxis> update
    

    1.39 QUANTAXIS CLI 增加一个选项 CLEAN

    2017/8/9

    删除旧的回测报告和log文件

    QUANTAXIS
    
    quantaxis> clean
    

    1.40 QA_util_diff_list

    2017/8/9

    一个快速返回前后相减的list函数

    1.41 QUANTAXIS.QABACKTEST.QABACKTEST_STOCKDAY.QA_backtest_get_OHLCV

    2017/8/9

    一个快速拿到OHLCV的函数

    拿到开高收低量

    Open,High,Low,Close,Volume=QB.QA_backtest_get_OHLCV(QB,QB.QA_backtest_get_market_data(QB,item,QB.today))
    
    

    1.42 QUANTAXIS MARKET ENGINE修改

    2017/8/10

    增加了一个严格模式的委托方式
    增加了收盘价委托的模式

    1.43 QA_util_get_real_datelist

    2017/8/10

    一个直接拿到真实的交易区间的list

    1.44 QA_fetch_stock_full('date',type)(0.4.0-beta-dev28)

    2017/8/14

    一个获取某一天全市场数据的接口 type有三种

    1. list
    2. numpy (默认)
    3. pandas
    import QUANTAXIS as QA
    In [2]: QA.QA_fetch_stock_full('2017-08-01')
    
    Out[2]:
    
    array([['600808', '4.57', '4.62', ..., '4.56', '1217308.12', '2017-08-01'],
           ['600231', '3.85', '3.9', ..., '3.81', '899979.31', '2017-08-01'],
           ['601619', '3.88', '3.88', ..., '3.88', '1856.2', '2017-08-01'],
           ...,
           ['603320', '42.0', '42.95', ..., '42.54', '50230.13', '2017-08-01'],
           ['hs300', '3738.74', '3770.4', ..., '3770.38', '152546544.0',
            '2017-08-01'],
           ['sz50', '2640.87', '2681.93', ..., '2681.81', '338205.06',
            '2017-08-01']],
          dtype='<U11')
    
    In [3]: QA.QA_fetch_stock_full('2017-08-01','p')
    
    Out[3]:
                  code     open     high      low    close        volume
    2017-08-01  600808     4.57     4.62     4.46     4.56  1.217308e+06
    2017-08-01  600231     3.85     3.90     3.71     3.81  8.999793e+05
    2017-08-01  601619     3.88     3.88     3.88     3.88  1.856200e+03
    2017-08-01  300067     6.45     6.72     6.44     6.55  1.744641e+05
    2017-08-01  600610     7.23     7.39     7.22     7.29  8.639420e+04
    2017-08-01  603778     9.98    10.30     9.90    10.17  1.652618e+05
    2017-08-01  601958     8.47     8.48     8.25     8.31  2.703109e+05
    2017-08-01  300528    14.60    14.66    14.38    14.64  1.585500e+04
    2017-08-01  300675    12.43    12.43    12.43    12.43  7.934700e+02
    2017-08-01  600088    15.95    15.95    15.65    15.80  1.194841e+04
    2017-08-01  603688    11.38    11.39    11.02    11.06  3.880022e+04
    2017-08-01  300416    22.41    22.41    21.90    22.01  8.022790e+03
    2017-08-01  300377    10.58    10.74    10.40    10.66  1.219292e+05
    2017-08-01  603612    29.44    29.44    29.44    29.44  6.987030e+03
    2017-08-01  300387    18.34    18.45    18.01    18.14  6.550860e+03
    2017-08-01  603918    21.25    21.46    21.12    21.43  7.064660e+03
    2017-08-01  300676    61.63    61.63    61.63    61.63  1.284490e+03
    2017-08-01  603909    28.50    28.50    28.01    28.29  1.134000e+04
    2017-08-01  600602     7.19     7.34     7.16     7.22  4.433393e+04
    2017-08-01  600119    13.83    14.98    13.81    14.66  1.432730e+05
    2017-08-01  002423    13.55    13.59    12.96    13.10  9.671325e+04
    2017-08-01  002084     8.39     8.45     8.30     8.38  2.086325e+04
    2017-08-01  603757    49.70    52.50    48.51    48.96  6.130912e+04
    2017-08-01  603903    37.30    38.97    37.00    38.53  3.565021e+04
    2017-08-01  300508    75.64    77.70    74.36    77.14  1.624389e+04
    2017-08-01  002887    55.45    60.49    55.45    60.49  1.570000e+02
    2017-08-01  300402    17.09    17.12    16.40    16.66  4.063693e+04
    2017-08-01  600846    10.20    10.58    10.06    10.30  7.099526e+05
    2017-08-01  603322    40.40    40.78    40.00    40.50  9.743430e+03
    2017-08-01  002302    22.15    22.29    21.65    21.81  3.073918e+05
    ...            ...      ...      ...      ...      ...           ...
    2017-08-01  300666    30.78    30.78    28.58    29.08  1.717917e+05
    2017-08-01  600068    11.42    11.63    11.35    11.56  7.490524e+05
    2017-08-01  603089    41.33    42.68    38.97    41.38  3.956856e+04
    2017-08-01  002236    23.95    24.18    23.57    23.95  1.549279e+05
    2017-08-01  002453     8.23     8.44     8.15     8.33  5.073431e+04
    2017-08-01  000952    17.06    17.80    16.65    17.00  3.366324e+05
    2017-08-01  603578    47.57    48.20    47.50    47.95  5.762650e+03
    2017-08-01  300097    25.30    26.09    25.20    25.88  5.197803e+04
    2017-08-01  002161    13.12    13.20    12.41    12.74  1.055990e+06
    2017-08-01  002753    28.56    28.70    27.27    28.10  1.924529e+05
    2017-08-01  000036    13.12    13.13    12.50    12.53  8.219014e+05
    2017-08-01  000710    56.98    58.34    56.63    58.00  1.359221e+04
    2017-08-01  002386    10.18    10.30     9.90    10.01  6.746068e+05
    2017-08-01  002430    11.73    12.37    11.20    11.24  3.188267e+05
    2017-08-01  002230    46.89    49.90    46.79    48.75  8.563892e+05
    2017-08-01  603133    36.68    36.96    35.57    36.39  1.071875e+05
    2017-08-01  603305    51.80    51.80    45.73    48.23  1.686128e+05
    2017-08-01  603505    22.10    24.43    21.21    24.43  2.496812e+05
    2017-08-01  300679   107.27   107.27   107.27   107.27  1.837600e+02
    2017-08-01  300136    38.10    38.31    37.75    38.00  4.952795e+04
    2017-08-01  603730    43.42    43.42    41.05    43.42  1.936224e+05
    2017-08-01  603355    52.80    52.88    51.89    52.27  7.977550e+03
    2017-08-01  600854     7.71     8.10     7.65     7.92  7.716632e+05
    2017-08-01  002258    14.06    14.44    13.83    14.03  8.656090e+04
    2017-08-01  600230    55.99    57.86    54.09    55.07  4.172212e+05
    2017-08-01  600291    35.90    38.30    35.60    36.03  9.485712e+05
    2017-08-01  300080     9.05     9.37     8.54     8.65  4.989257e+05
    2017-08-01  603320    42.00    42.95    40.61    42.54  5.023013e+04
    2017-08-01   hs300  3738.74  3770.40  3737.10  3770.38  1.525465e+08
    2017-08-01    sz50  2640.87  2681.93  2638.02  2681.81  3.382051e+05
    
    [3053 rows x 6 columns]
    

    1.45 同花顺日线爬虫可用(0.4.0-beta-dev29)

    2017/8/14

    import QUANTAXIS as QA
    QA.QA_fetch_get_stock_day('ths','000001','2015-01-01','2017-08-01','01')
    
    #引擎用ths或者THS  
    
    #最后一个选项是复权方式
    #00 不复权  01 前复权  02 后复权
    
    
    Out[3]:
                 open   high    low  close     volume         amount factor
    date
    2015-01-05  10.70  10.90  10.43  10.72  286043640  4565387800.00  0.034
    2015-01-06  10.60  10.98  10.39  10.55  216642140  3453446100.00  0.025
    2015-01-07  10.40  10.59  10.22  10.34  170012060  2634796400.00  0.020
    2015-01-08  10.36  10.41   9.94   9.98  140771420  2128003400.00  0.017
    2015-01-09   9.94  10.62   9.81  10.07  250850020  3835378000.00  0.029
    2015-01-12   9.92  10.05   9.66   9.85  155329080  2293104600.00  0.018
    2015-01-13   9.77   9.94   9.74   9.79   81687477  1204987140.00  0.010
    2015-01-14   9.86  10.15   9.80   9.88  126302964  1889296600.00  0.015
    2015-01-15   9.91  10.25   9.81  10.25  124217032  1868795900.00  0.015
    2015-01-16  10.29  10.44  10.14  10.27  155584630  2403346100.00  0.018
    2015-01-19   9.32   9.71   9.20   9.20  213712360  3016203000.00  0.025
    2015-01-20   9.20   9.36   9.01   9.20  149101810  2064280500.00  0.018
    2015-01-21   9.23   9.73   9.14   9.61  194053030  2758192700.00  0.023
    2015-01-22   9.55   9.68   9.43   9.52  125501611  1801436200.00  0.015
    2015-01-23   9.57   9.75   9.52   9.59  145918190  2108746700.00  0.017
    2015-01-26   9.57   9.62   9.43   9.55  105760580  1508446500.00  0.012
    2015-01-27   9.56   9.57   9.20   9.31  133949466  1881058900.00  0.016
    2015-01-28   9.23   9.52   9.18   9.36  124087755  1742175700.00  0.015
    2015-01-29   9.19   9.32   9.14   9.25  101675329  1408825300.00  0.012
    2015-01-30   9.27   9.40   9.15   9.27   93011669  1298735710.00  0.011
    2015-02-02   9.04   9.18   9.00   9.06   86093216  1176949550.00  0.010
    2015-02-03   9.16   9.31   9.05   9.28   88334914  1217876590.00  0.010
    2015-02-04   9.32   9.34   9.11   9.12   80762311  1122666750.00  0.010
    2015-02-05   9.52   9.62   9.15   9.17  191372910  2710523800.00  0.022
    2015-02-06   9.10   9.28   8.90   8.98  103040856  1411298500.00  0.012
    2015-02-09   8.97   9.09   8.77   8.98   94658628  1273141150.00  0.011
    2015-02-10   8.96   9.19   8.91   9.16   72487537   991823740.00  0.009
    2015-02-11   9.16   9.21   9.09   9.13   55434951   763414580.00  0.007
    2015-02-12   9.14   9.25   9.05   9.22   60871568   838611230.00  0.007
    2015-02-13   9.27   9.44   9.21   9.28   88774310  1244514790.00  0.010
    ...           ...    ...    ...    ...        ...            ...    ...
    2017-06-21   9.01   9.02   8.95   8.99   49693219   454488890.00  0.002
    2017-06-22   8.99   9.24   8.98   9.09  142695820  1325210560.00  0.007
    2017-06-23   9.07   9.11   9.00   9.09   58400441   538303570.00  0.003
    2017-06-26   9.10   9.24   9.10   9.14   71076995   663762850.00  0.003
    2017-06-27   9.14   9.23   9.11   9.20   54601613   509162010.00  0.003
    2017-06-28   9.19   9.33   9.17   9.27  116879622  1102438100.00  0.006
    2017-06-29   9.27   9.29   9.21   9.27   48880457   459810420.00  0.002
    2017-06-30   9.24   9.27   9.15   9.23   49963349   468003520.00  0.002
    2017-07-03   9.24   9.27   9.18   9.24   38834937   364465850.00  0.002
    2017-07-04   9.24   9.25   9.14   9.18   48836253   456577020.00  0.002
    2017-07-05   9.13   9.22   9.11   9.21   56772000   529294110.00  0.003
    2017-07-06   9.20   9.25   9.15   9.24   73891186   691387180.00  0.004
    2017-07-07   9.21   9.32   9.18   9.31   76036958   717084350.00  0.004
    2017-07-10   9.29   9.50   9.28   9.43  136081590  1303090010.00  0.006
    2017-07-11   9.45  10.30   9.45  10.09  381208660  3842010200.00  0.018
    2017-07-12  10.11  10.42  10.04  10.18  299884400  3113681300.00  0.014
    2017-07-13  10.14  10.74  10.08  10.74  299453430  3180144600.00  0.014
    2017-07-14  10.65  10.78  10.50  10.74  172257030  1864449200.00  0.008
    2017-07-17  10.79  11.17  10.56  10.65  327312320  3608692300.00  0.016
    2017-07-18  10.59  10.98  10.46  10.89  234943190  2558434000.00  0.011
    2017-07-19  10.83  11.03  10.72  10.93  193307590  2131336300.00  0.009
    2017-07-20  10.92  11.06  10.75  10.81  153733860  1695061000.00  0.007
    2017-07-21  10.83  10.95  10.69  10.89  150102000  1625416400.00  0.007
    2017-07-24  10.82  11.06  10.73  10.95  169266440  1846886700.00  0.008
    2017-07-25  10.98  11.27  10.95  11.00  195476840  2172114600.00  0.009
    2017-07-26  10.92  11.18  10.66  10.74  169741210  1846282200.00  0.008
    2017-07-27  10.72  10.77  10.53  10.59  119449040  1273888890.00  0.006
    2017-07-28  10.61  10.81  10.58  10.74   81919535   877769280.00  0.004
    2017-07-31  10.80  10.82  10.45  10.67  157586440  1671814000.00  0.008
    2017-08-01  10.64  11.08  10.60  11.04  203570990  2222887900.00  0.010
    
    [629 rows x 7 columns]
    

    1.46 数据源更换 QA_fetch_get_stock_day('ts')(0.4.0-beta-dev30,dev31,dev32)

    2017/8/14

    把tushare的数据源更换成腾讯网的

    dev31 更新 增加retry次数,增加暂停时间到0.005秒

    dev32 更新 retry200次

    1.47 新增数据库api QA_util_mongo_initial,QA_util_mongo_make_index(0.4.0-beta-dev33)

    2017/8/14

    QA_util_mongo_initial()

    删除数据库数据文件

    QA_util_mongo_make_index()

    对于日线和分钟线建立索引

    也可以在quantaxis cli中使用

    QUANTAXIS> drop_database

    QUANATXIS> make_index

    1.48 修复一个委托单超过市场上下限 返回none的bug(0.4.0-beta-dev34)

    2017/8/14

    现在返回的是market 400状态

    1.49 修复了pytdx的get_k_data api(0.4.0-beta-dev35)

    2017/8/15

    之前这个api 因为停牌原因会导致时间索引错位

    现在已经修复

    In [2]: QA.QA_fetch_get_stock_day('tdx','000001','1997-01-21','1997-03-21')
    
    Out[2]:
                 open  close   high    low       vol        amount
    date
    1997-01-21  16.82  16.98  17.20  16.80  131296.0  2.229589e+08
    1997-01-22  17.20  17.49  17.58  17.02  232687.0  4.047471e+08
    1997-01-23  17.50  18.13  18.40  17.50  264847.0  4.773427e+08
    1997-01-24  18.20  18.05  18.24  17.68  169601.0  3.046991e+08
    1997-01-27  18.09  18.04  18.23  17.99  154886.0  2.805207e+08
    1997-01-28  18.00  18.25  18.35  18.00  110507.0  2.011880e+08
    1997-01-29  18.26  18.81  19.09  18.24  200763.0  3.763796e+08
    1997-01-30  19.01  18.98  19.12  18.66  125712.0  2.374635e+08
    1997-01-31  19.00  19.29  19.50  18.90  271490.0  5.232251e+08
    1997-02-17  18.98  19.30  19.55  18.73  179070.0  3.419574e+08
    1997-02-18  19.00  17.61  19.09  17.30  636572.0  1.145977e+09
    1997-02-19  18.00  18.91  18.95  18.00  454504.0  8.426491e+08
    1997-02-20  17.03  18.88  19.62  17.03  629958.0  1.170372e+09
    1997-02-21  18.80  19.00  19.10  18.68  228541.0  4.309114e+08
    1997-02-24  19.10  18.89  19.23  18.87  142884.0  2.713711e+08
    1997-02-25  19.00  19.39  19.78  18.83  284111.0  5.501372e+08
    1997-02-26  19.60  19.54  19.69  19.35  129555.0  2.524559e+08
    1997-02-27  19.50  19.30  19.60  19.20  158984.0  3.085820e+08
    1997-02-28  19.25  19.20  19.28  18.90  149898.0  2.866645e+08
    1997-03-03  19.28  19.36  19.56  19.18  122863.0  2.377923e+08
    1997-03-04  19.33  19.15  19.33  19.00  156856.0  3.004253e+08
    1997-03-05  19.18  19.01  19.32  19.00  114645.0  2.188174e+08
    1997-03-06  18.98  19.05  19.10  18.89   95569.0  1.818445e+08
    1997-03-07  19.08  19.12  19.35  19.00   98483.0  1.882669e+08
    1997-03-10  19.20  19.44  19.63  19.15  128497.0  2.496492e+08
    1997-03-11  19.45  19.62  19.65  19.27  183575.0  3.580383e+08
    1997-03-12  19.70  20.05  20.20  19.64  251126.0  5.020225e+08
    1997-03-13  20.10  19.89  20.30  19.75  178583.0  3.577445e+08
    1997-03-14  19.88  20.33  20.39  19.60  171159.0  3.415037e+08
    1997-03-17  20.80  22.30  22.37  20.80  465572.0  1.015967e+09
    1997-03-18  22.50  22.55  23.45  21.90  439436.0  9.973509e+08
    1997-03-19  22.60  23.40  23.75  22.45  423729.0  9.799536e+08
    1997-03-20  23.51  23.18  24.24  23.00  318485.0  7.548200e+08
    1997-03-21  23.01  24.40  24.45  23.01  333392.0  7.951931e+08
    

    巨大改动/重构

    2.1 QA.QAARP.QAAccount

    在0.3.9-gamma中,quantaxis对于account账户方法进行了重构.优化了回测逻辑以及数组的存储方式.

    现在的account只有如下几个变量:

    • assets: 总资金曲线
    • hold: 持仓列表
    • history : 历史交易列表
    • cash: 历史现金列表
    • detail: 买卖明细表(有买入id和卖出id对应关系)

    新版的quantaxis并不在回测框架中定义利润的计算以及其他的逻辑,这些在backtest_analysis中会涉及计算,当然也可以自己定义利润的计算方法

    2.2 QA.QABacktest.Backtest_analysis

    对于quantaxis_backtest_analysis进行了巨大的修改,现在的backtest_analysis的接口调用函数有了一定程度的修改.

    对于交易组合而言,quantaxis的backtest_analysis 可以直接对于组合进行分析,计算组合的情况

    增加了可以自己选定组合的benchmark标的

    2.3 QA.QABacktest.QABacktest

    对于QABacktest进行了彻底的重构,重新写入了读取数据方法和函数句柄的接受方法,具体参见test/new test

    2.4 QA.QA_Queue

    事件队列,参见 ###1.14

    2.5 彻底放弃QUANTAXIS-WEBKIT-CLIENT

    webkit/client 是一个基于electronic的客户端,但是其功能本质上和网页版并无区别,且缺乏维护

    0.4.0-alpha中将其去除,之后也不会再维护

    2.6 更换QABACKTEST的回测模式

    参见 ###1.34

    import QUANTAXIS as QA
    from QUANTAXIS import QA_Backtest_stock_day as QB
    
    
    """
    写在前面:
    ===============QUANTAXIS BACKTEST STOCK_DAY中的变量
    常量:
    QB.account.message  当前账户消息
    QB.account.cash  当前可用资金
    QB.account.hold  当前账户持仓
    QB.account.history  当前账户的历史交易记录
    QB.account.assets 当前账户总资产
    QB.account.detail 当前账户的交易对账单
    QB.account.init_assest 账户的最初资金
    
    
    
    QB.strategy_stock_list 回测初始化的时候  输入的一个回测标的
    QB.strategy_start_date 回测的开始时间
    QB.strategy_end_date  回测的结束时间
    
    
    QB.today  在策略里面代表策略执行时的日期
    
    QB.benchmark_code  策略业绩评价的对照行情
    
    
    
    
    函数:
    获取市场(基于gap)行情:
    QB.QA_backtest_get_market_data(QB,code,QB.today)
    获取市场自定义时间段行情:
    QA.QA_fetch_stock_day(code,start,end,model)
    
    
    报单:
    QB.QA_backtest_send_order(QB, code,amount,towards,order: dict)
    
    order有三种方式:
    1.限价成交 order['bid_model']=0或者l,L
      注意: 限价成交需要给出价格:
      order['price']=xxxx
    
    2.市价成交 order['bid_model']=1或者m,M,market,Market
    3.严格成交模式 order['bid_model']=2或者s,S
        及 买入按bar的最高价成交 卖出按bar的最低价成交
    
    查询当前一只股票的持仓量
    QB.QA_backtest_hold_amount(QB,code)
    
    
    """
    
    
    @QB.backtest_init
    def init():
        #
        QB.setting.QA_util_sql_mongo_ip='192.168.4.189'
    
        QB.account.init_assest=2500000
        QB.benchmark_code='hs300'
    
        QB.strategy_stock_list=['000001','000002','600010','601801','603111']
        QB.strategy_start_date='2017-03-01'
        QB.strategy_end_date='2017-07-01'
    
    @QB.before_backtest
    def before_backtest():
        global risk_position
        QA.QA_util_log_info(QB.account.message)
        
        
        
    @QB.load_strategy
    def strategy():
        print(QB.account.message)
        print(QB.account.cash)
        input()
        for item in QB.strategy_stock_list:
            if QB.QA_backtest_hold_amount(QB,item)==0:
            #获取数据的第一种办法[这个是根据回测时制定的股票列表初始化的数据]
                QB.QA_backtest_send_order(QB,item,10000,1,{'bid_model':'Market'})
    
        
            else:
                print(QB.QA_backtest_hold_amount(QB,item))
                QB.QA_backtest_send_order(QB,item,10000,-1,{'bid_model':'Market'})
        
    @QB.end_backtest
    def after_backtest():
        pass
    
    

    2.7 数据源更换(0.4.0-beta-dev30)

    对比了通达信,同花顺,ifeng,腾讯财经的数据源
    前复权:

    ====================腾讯======================
    600340
    2009-09-02
    http://web.ifzq.gtimg.cn/appstock/app/fqkline/get?_var=kline_dayqfq2009&param=sh600340,day,2009-01-01,2010-12-31,640,qfq&r=0.18617627655340497
    [{'date': '2009-09-02', 'open': 1.264, 'close': 1.293, 'high': 1.303, 'low': 1.264, 'volume': 30684.29, 'code': '600340', 'date_stamp': 1251820800.0, 'fqtype': 'qfq'}, {'date': '2009-09-03', 'open': 1.307, 'close': 1.357, 'high': 1.357, 'low': 1.307, 'volume': 40504.84, 'code': '600340', 'date_stamp': 1251907200.0, 'fqtype': 'qfq'}, {'date': '2009-09-04', 'open': 1.423, 'close': 1.425, 'high': 1.425, 'low': 1.386, 'volume': 52082.41, 'code': '600340', 'date_stamp': 1251993600.0, 'fqtype': 'qfq'}, {'date': '2009-09-07', 'open': 1.462, 'close': 1.471, 'high': 1.497, 'low': 1.425, 'volume': 69120.01, 'code': '600340', 'date_stamp': 1252252800.0, 'fqtype': 'qfq'}, {'date': '2009-09-09', 'open': 1.544, 'close': 1.544, 'high': 1.544, 'low': 1.544, 'volume': 2528.08, 'code': '600340', 'date_stamp': 1252425600.0, 'fqtype': 'qfq'}, {'date': '2009-09-10', 'open': 1.621, 'close': 1.621, 'high': 1.621, 'low': 1.592, 'volume': 65376.57, 'code': '600340', 'date_stamp': 1252512000.0, 'fqtype': 'qfq'}, {'date': '2009-09-11', 'open': 1.694, 'close': 1.633, 'high': 1.694, 'low': 1.615, 'volume': 105574.09, 'code': '600340', 'date_stamp': 1252598400.0, 'fqtype': 'qfq'}, {'date': '2009-09-14', 'open': 1.619, 'close': 1.715, 'high': 1.715, 'low': 1.593, 'volume': 90609.98, 'code': '600340', 'date_stamp': 1252857600.0, 'fqtype': 'qfq'}, {'date': '2009-09-15', 'open': 1.743, 'close': 1.73, 'high': 1.782, 'low': 1.707, 'volume': 45260.01, 'code': '600340', 'date_stamp': 1252944000.0, 'fqtype': 'qfq'}, {'date': '2009-09-16', 'open': 1.702, 'close': 1.733, 'high': 1.747, 'low': 1.662, 'volume': 48149.54, 'code': '600340', 'date_stamp': 1253030400.0, 'fqtype': 'qfq'}]
    ====================ths同花顺======================
    600340
    2009-09-02
                 open   high    low  close    volume        amount  factor
    date
    2009-09-02  -0.48  -0.44  -0.48  -0.45   3068429   30789151.00  15.202
    2009-09-03  -0.43  -0.38  -0.43  -0.38   4050484   42518565.00  20.068
    2009-09-04  -0.31  -0.30  -0.35  -0.30   5208241   57345823.00  25.804
    2009-09-07  -0.26  -0.23  -0.30  -0.25   6912001   79692366.00  34.245
    2009-09-09  -0.18  -0.18  -0.18  -0.18    252808    3041280.00   1.253
    2009-09-10  -0.09  -0.09  -0.12  -0.09   6537657   82537179.00  32.390
    2009-09-11  -0.01  -0.01  -0.10  -0.08  10557409  135804180.00  52.306
    2009-09-14  -0.10   0.01  -0.12   0.01   9060998  117785149.00  44.892
    2009-09-15   0.04   0.08   0.00   0.03   4526001   61421440.00  22.424
    2009-09-16  -0.00   0.04  -0.05   0.03   4814954   63716609.00  23.855
    In [3]: =======凤凰网=====
    ts.get_h_data('600340','2009-09-02','2009-09-16',autype='qfq')
    [Getting data:]Out[3]:
                 open   high  close    low      volume       amount
    date
    2009-09-16  39.29  40.33  40.00  38.37   4814954.0   63716608.0
    2009-09-15  40.24  41.13  39.94  39.41   4526001.0   61421440.0
    2009-09-14  37.37  39.59  39.59  36.77   9060998.0  117785152.0
    2009-09-11  39.11  39.11  37.69  37.28  10557409.0  135804192.0
    2009-09-10  37.43  37.43  37.43  36.74   6537657.0   82537176.0
    2009-09-09  35.65  35.65  35.65  35.65    252808.0    3041280.0
    2009-09-07  33.75  34.55  33.96  32.89   6912001.0   79692368.0
    2009-09-04  32.86  32.89  32.89  32.00   5208241.0   57345824.0
    2009-09-03  30.17  31.32  31.32  30.17   4050484.0   42518564.0
    2009-09-02  29.19  30.08  29.84  29.19   3068429.0   30789152.0
    

    对比发现,ifeng,同花顺,通达信(软件)的复权方法有问题,最终采用wind/腾讯的数据作为数据源

    缺点是这样没有turnover数据

    重要性能优化 重新定义回测流程,减少数据库IO压力

    在新的回测框架中,大幅优化了数据的读取方式,通过大量的内存结构来进行数据缓存,之后的数据调用请求都通过内存中的数据接口来获得,这样大大减少了数据库IO

    同时,通过对于Account账户的修改,大幅优化了回测数据的存储方式,以及存储的的模式,大大减少了回测数据存储的数量

    废弃的接口

    to do list

    相关文章

      网友评论

        本文标题:QUANTAXIS 升级日志

        本文链接:https://www.haomeiwen.com/subject/qqzprxtx.html