美文网首页
Flink流式计算WordCountTopN

Flink流式计算WordCountTopN

作者: 大空翼123 | 来源:发表于2022-01-23 09:48 被阅读0次

Flink流式计算WordCountTopN可以采用流处理编程和FlinkSql自定义UDTF函数的方式

流处理编程方法:

public class Flink05_WC_TOPN {

public static void main(String[] args)throws Exception {

//TODO 1.获取执行环境

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

      // StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());

//并行度1

        env.setParallelism(1);

        //读取无界数据

        DataStreamSource streamSource = env.socketTextStream("hadoop102", 8888);

        //TODO 2.切分数据

        SingleOutputStreamOperator outputStreamOperator = streamSource.flatMap(new FlatMapFunction() {

@Override

            public void flatMap(String value, Collector out)throws Exception {

String[] strings = value.split(" ");

                for (String string : strings) {

out.collect(string);

                }

}

});

        //转为tuple

        SingleOutputStreamOperator> streamOperator = outputStreamOperator.map(new MapFunction>() {

@Override

            public Tuple2map(String value)throws Exception {

return Tuple2.of(value, 1);

            }

});

        ArrayList> top3list =new ArrayList<>();

        //TODO 3. 聚合求sum

        KeyedStream, Tuple> tuple2TupleKeyedStream = streamOperator.keyBy(0);

        SingleOutputStreamOperator> KVstream = tuple2TupleKeyedStream.sum(1);

        SingleOutputStreamOperator TOP3 = KVstream.process(new ProcessFunction, String>() {

@Override

            //除去此String在List中保存的上一个状态

            public void processElement(Tuple2 value, Context ctx, Collector out)throws Exception {

for (int i =0; i

Tuple2 stringIntegerTuple2 =top3list.get(i);

                    if(stringIntegerTuple2.f0.equals(value.f0)){

top3list.remove(i);

                    }

}

top3list.add(value);

                top3list.sort(new Comparator>() {

@Override

                    public int compare(Tuple2 o1, Tuple2 o2) {

return Integer.valueOf(o2.f1) - Integer.valueOf(o1.f1);

                    }

});

                if (top3list.size() >3) {

top3list.remove(3);

                }

out.collect(top3list.toString());

            }

});

        TOP3.print();

        env.execute();

    }

}


FlinkSql自定义UDATF函数的方式使用

public class Flink26_Fun_UDATF {

public static void main(String[] args) {

//TODO 1.获取流执行环境

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        //TODO 2.获取表的执行环境

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        //TODO 3.获取数据

        DataStreamSource streamSource = env.fromElements(new WaterSensor("sensor_1", 1000L, 10),

                new WaterSensor("sensor_1", 2000L, 20),

                new WaterSensor("sensor_2", 3000L, 30),

                new WaterSensor("sensor_1", 4000L, 40),

                new WaterSensor("sensor_1", 5000L, 50),

                new WaterSensor("sensor_2", 6000L, 60));

        //2.从端口读取数据

/*      DataStreamSource Source= env.socketTextStream("hadoop102", 8888);

//3.将数据转为WaterSensor

SingleOutputStreamOperator streamSource = Source.map(new MapFunction() {

@Override

public WaterSensor map(String value) throws Exception {

String[] split = value.split(" ");

return new WaterSensor(split[0], Long.parseLong(split[1]), Integer.parseInt(split[2]));

}

});

*/

        //TODO 4.将流转为表

        Table table = tableEnv.fromDataStream(streamSource, $("id"), $("ts"), $("vc"));

        //TODO 5.使用UDF

        //不注册直接使用

        table

.groupBy("id")

.flatAggregate(call(MyUDATF.class,$("vc")).as("value","top"))

.select($("id"),$("value"),$("top"))

//  .select($("id"),$("f0"),$("f1"))  //不as calue 和top写法

                .execute().print();

        //注册一个定义函数

/*  tableEnv.createTemporarySystemFunction("MyUDATF", MyUDATF.class);

//TableAPi

table

.groupBy("id")

.flatAggregate(call("MyUDATF",$("vc")).as("value","top"))

.select($("id"),$("value"),$("top"))

.execute().print();*/

    }

//定义一个类当做累加器

    public static class top2Vc{

public Integerfirst=Integer.MIN_VALUE;;

        public Integersecond = Integer.MIN_VALUE;

    }

//自定义UDATF函数,实现TOP2

  public  static class MyUDATFextends TableAggregateFunction,top2Vc>{

//创建累加器

        @Override

        public top2VccreateAccumulator() {

top2Vc top2Vc =new top2Vc();

            return top2Vc;

        }

//累加操作

        public  void accumulate(top2Vc acc,Integer value){

//先比较当前数据是否大于第一

            if(value>acc.first){

acc.second=acc.first;

                acc.first=value;

            }else if(value>acc.second) {

acc.second=value;

            }

}

//将结果发送出去

        public void emitValue(top2Vc acc, Collector> out){

if(acc.first!=Integer.MIN_VALUE){

out.collect(Tuple2.of(acc.first,1));

            }if(acc.second!=Integer.MIN_VALUE){

out.collect(Tuple2.of(acc.second,2));

            }

}

}

}

相关文章

网友评论

      本文标题:Flink流式计算WordCountTopN

      本文链接:https://www.haomeiwen.com/subject/qrryhrtx.html