美文网首页线段树
数据结构-线段树

数据结构-线段树

作者: 听你讲故事啊 | 来源:发表于2019-04-10 19:12 被阅读0次

    实现一个线段树

    下面实现的线段树,有三个功能:

    1. 把数组构建成一颗线段树
    2. 线段树的修改
    3. 线段树的查询
    public class SegmentTree<T> {
    
        private T tree[];
        private T data[];
    
        private Merger<T> merger;
    
        public interface Merger<T> {
            T merge(T a, T b);
        }
    
        public SegmentTree(T[] arr, Merger<T> merger) {
            this.merger = merger;
            data = (T[]) new Object[arr.length];
            for (int i = 0; i < data.length; i++) {
                data[i] = arr[i];
            }
    
            this.tree = (T[]) new Object[data.length * 4];
            buildSegmentTree(0, 0, data.length - 1);
    
        }
    
    
        /**
         * 构建线段树
         *
         * @param treeIndex 当前需要添加节点的索引
         * @param treeLeft  treeIndex左边界
         * @param treeRight treeIndex右边界
         */
        private void buildSegmentTree(int treeIndex, int treeLeft, int treeRight) {
            if (treeLeft == treeRight) {
                tree[treeIndex] = data[treeLeft];
                return;
            }
            //当前节点左子树索引
            int leftTreeIndex = getLeft(treeIndex);
            //当前节点右子树索引
            int rightTreeIndex = getRight(treeIndex);
            //int mid = (left+right)/2; 如果left和right很大,可能会导致整型溢出
            int mid = treeLeft + (treeRight - treeLeft) / 2;
            //构建左子树
            buildSegmentTree(leftTreeIndex, treeLeft, mid);
            //构建右子树
            buildSegmentTree(rightTreeIndex, mid + 1, treeRight);
            //当前节点存放的值
            tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
    
        }
    
        public T query(int start, int end) {
            return query(0, 0, data.length - 1, start, end);
        }
    
        /**
         * @param treeIndex 当前查找的节点
         * @param treeLeft  treeIndex的左边界
         * @param treeRight treeIndex的右边界
         * @param queryL    用户需要查找的左边界
         * @param queryR    用户需要查找的右边界
         * @return
         */
        private T query(int treeIndex, int treeLeft, int treeRight, int queryL, int queryR) {
    
            //1, 需要查找的范围完刚好在这个treeIndex节点的区间
            if (treeLeft == queryL && treeRight == queryR) {
                return tree[treeIndex];
            }
    
            //当前节点的区间的中间点
            int mid = treeLeft + (treeRight - treeLeft) / 2;
            //左子树索引
            int leftTreeIndex = getLeft(treeIndex);
            //右子树索引
            int rightTreeIndex = getRight(treeIndex);
    
    
            //2, 需要查找的范围完全在左子树的区间里
            if (queryR <= mid) {
                return query(leftTreeIndex, treeLeft, mid, queryL, queryR);
            }
            //3, 需要查找的范围完全在右子树区间里
            if (queryL >= mid + 1) {
                return query(rightTreeIndex, mid + 1, treeRight, queryL, queryR);
            }
    
            //需要查找的范围一部分在左子树里,一部分在右子树中
            T left = query(leftTreeIndex, treeLeft, mid, queryL, mid);
            T right = query(rightTreeIndex, mid + 1, treeRight, mid + 1, queryR);
            return merger.merge(left, right);
        }
    
    
        public void update(int index, T e) {
            data[index] = e;
            update(0, 0, data.length - 1, index, e);
        }
    
    
        private void update(int treeIndex, int treeLeft, int treeRight, int index, T e) {
            if (treeLeft == treeRight) {
                tree[treeIndex] = e;
                return;
            }
    
            int mid = treeLeft + (treeRight - treeLeft) / 2;
            int leftChildIndex = getLeft(treeIndex);
            int rightChildIndex = getRight(treeIndex);
    
            if (index <= mid) {
                update(leftChildIndex, treeLeft, mid, index, e);
            } else if (index >= mid + 1) {
                update(rightChildIndex, mid + 1, treeRight, index, e);
            }
    
            //更改完叶子节点后,还需要对他的所有祖辈节点更新
            tree[treeIndex] = merger.merge(tree[leftChildIndex], tree[rightChildIndex]);
        }
    
        public T get(int index) {
            return data[0];
        }
    
        public int size() {
            return data.length;
        }
    
        public int getLeft(int index) {
            return index * 2 + 1;
        }
    
        public int getRight(int index) {
            return index * 2 + 2;
        }
    
        @Override
        public String toString() {
            StringBuilder builder = new StringBuilder();
            builder.append("[");
            for (int i = 0; i < tree.length; i++) {
                if (tree[i] == null) {
                    continue;
                }
                builder.append(tree[i]).append(',');
            }
            builder.deleteCharAt(builder.length() - 1);
            builder.append(']');
            return builder.toString();
        }
    }
    

    303号问题

    给定数组, 求区间的和, 数组不可变

    class NumArray {
    
        private interface Merger<E> {
            E merge(E a, E b);
        }
    
        private class SegmentTree<E> {
    
            private E[] tree;
            private E[] data;
            private Merger<E> merger;
    
            public SegmentTree(E[] arr, Merger<E> merger){
    
                this.merger = merger;
    
                data = (E[])new Object[arr.length];
                for(int i = 0 ; i < arr.length ; i ++)
                    data[i] = arr[i];
    
                tree = (E[])new Object[4 * arr.length];
                buildSegmentTree(0, 0, arr.length - 1);
            }
    
            // 在treeIndex的位置创建表示区间[l...r]的线段树
            private void buildSegmentTree(int treeIndex, int l, int r){
    
                if(l == r){
                    tree[treeIndex] = data[l];
                    return;
                }
    
                int leftTreeIndex = leftChild(treeIndex);
                int rightTreeIndex = rightChild(treeIndex);
    
                // int mid = (l + r) / 2;
                int mid = l + (r - l) / 2;
                buildSegmentTree(leftTreeIndex, l, mid);
                buildSegmentTree(rightTreeIndex, mid + 1, r);
    
                tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
            }
    
            public int getSize(){
                return data.length;
            }
    
            public E get(int index){
                if(index < 0 || index >= data.length)
                    throw new IllegalArgumentException("Index is illegal.");
                return data[index];
            }
    
            // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
            private int leftChild(int index){
                return 2*index + 1;
            }
    
            // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
            private int rightChild(int index){
                return 2*index + 2;
            }
    
            // 返回区间[queryL, queryR]的值
            public E query(int queryL, int queryR){
    
                if(queryL < 0 || queryL >= data.length ||
                        queryR < 0 || queryR >= data.length || queryL > queryR)
                    throw new IllegalArgumentException("Index is illegal.");
    
                return query(0, 0, data.length - 1, queryL, queryR);
            }
    
            // 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
            private E query(int treeIndex, int l, int r, int queryL, int queryR){
    
                if(l == queryL && r == queryR)
                    return tree[treeIndex];
    
                int mid = l + (r - l) / 2;
                // treeIndex的节点分为[l...mid]和[mid+1...r]两部分
    
                int leftTreeIndex = leftChild(treeIndex);
                int rightTreeIndex = rightChild(treeIndex);
                if(queryL >= mid + 1)
                    return query(rightTreeIndex, mid + 1, r, queryL, queryR);
                else if(queryR <= mid)
                    return query(leftTreeIndex, l, mid, queryL, queryR);
    
                E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
                E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
                return merger.merge(leftResult, rightResult);
            }
    
            @Override
            public String toString(){
                StringBuilder res = new StringBuilder();
                res.append('[');
                for(int i = 0 ; i < tree.length ; i ++){
                    if(tree[i] != null)
                        res.append(tree[i]);
                    else
                        res.append("null");
    
                    if(i != tree.length - 1)
                        res.append(", ");
                }
                res.append(']');
                return res.toString();
            }
        }
    
        private SegmentTree<Integer> segmentTree;
    
        public NumArray(int[] nums) {
    
            if(nums.length > 0){
                Integer[] data = new Integer[nums.length];
                for (int i = 0; i < nums.length; i++)
                    data[i] = nums[i];
                segmentTree = new SegmentTree<>(data, (a, b) -> a + b);
            }
    
        }
    
        public int sumRange(int i, int j) {
    
            if(segmentTree == null)
                throw new IllegalArgumentException("Segment Tree is null");
    
            return segmentTree.query(i, j);
        }
    }
    

    307号问题

    给定数组, 求区间的和, 数组可变
    需要给线段树添加一个更新方法

    class NumArray {
    
        private interface Merger<E> {
            E merge(E a, E b);
        }
    
        private class SegmentTree<E> {
    
            private E[] tree;
            private E[] data;
            private Merger<E> merger;
    
            public SegmentTree(E[] arr, Merger<E> merger){
    
                this.merger = merger;
    
                data = (E[])new Object[arr.length];
                for(int i = 0 ; i < arr.length ; i ++)
                    data[i] = arr[i];
    
                tree = (E[])new Object[4 * arr.length];
                buildSegmentTree(0, 0, arr.length - 1);
            }
    
            // 在treeIndex的位置创建表示区间[l...r]的线段树
            private void buildSegmentTree(int treeIndex, int l, int r){
    
                if(l == r){
                    tree[treeIndex] = data[l];
                    return;
                }
    
                int leftTreeIndex = leftChild(treeIndex);
                int rightTreeIndex = rightChild(treeIndex);
    
                // int mid = (l + r) / 2;
                int mid = l + (r - l) / 2;
                buildSegmentTree(leftTreeIndex, l, mid);
                buildSegmentTree(rightTreeIndex, mid + 1, r);
    
                tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
            }
    
            public int getSize(){
                return data.length;
            }
    
            public E get(int index){
                if(index < 0 || index >= data.length)
                    throw new IllegalArgumentException("Index is illegal.");
                return data[index];
            }
    
            // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
            private int leftChild(int index){
                return 2*index + 1;
            }
    
            // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
            private int rightChild(int index){
                return 2*index + 2;
            }
    
            // 返回区间[queryL, queryR]的值
            public E query(int queryL, int queryR){
    
                if(queryL < 0 || queryL >= data.length ||
                        queryR < 0 || queryR >= data.length || queryL > queryR)
                    throw new IllegalArgumentException("Index is illegal.");
    
                return query(0, 0, data.length - 1, queryL, queryR);
            }
    
            // 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
            private E query(int treeIndex, int l, int r, int queryL, int queryR){
    
                if(l == queryL && r == queryR)
                    return tree[treeIndex];
    
                int mid = l + (r - l) / 2;
                // treeIndex的节点分为[l...mid]和[mid+1...r]两部分
    
                int leftTreeIndex = leftChild(treeIndex);
                int rightTreeIndex = rightChild(treeIndex);
                if(queryL >= mid + 1)
                    return query(rightTreeIndex, mid + 1, r, queryL, queryR);
                else if(queryR <= mid)
                    return query(leftTreeIndex, l, mid, queryL, queryR);
    
                E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
                E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
                return merger.merge(leftResult, rightResult);
            }
    
            // 将index位置的值,更新为e
            public void set(int index, E e){
    
                if(index < 0 || index >= data.length)
                    throw new IllegalArgumentException("Index is illegal");
    
                data[index] = e;
                set(0, 0, data.length - 1, index, e);
            }
    
            // 在以treeIndex为根的线段树中更新index的值为e
            private void set(int treeIndex, int l, int r, int index, E e){
    
                if(l == r){
                    tree[treeIndex] = e;
                    return;
                }
    
                int mid = l + (r - l) / 2;
                // treeIndex的节点分为[l...mid]和[mid+1...r]两部分
    
                int leftTreeIndex = leftChild(treeIndex);
                int rightTreeIndex = rightChild(treeIndex);
                if(index >= mid + 1)
                    set(rightTreeIndex, mid + 1, r, index, e);
                else // index <= mid
                    set(leftTreeIndex, l, mid, index, e);
    
                tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
            }
    
            @Override
            public String toString(){
                StringBuilder res = new StringBuilder();
                res.append('[');
                for(int i = 0 ; i < tree.length ; i ++){
                    if(tree[i] != null)
                        res.append(tree[i]);
                    else
                        res.append("null");
    
                    if(i != tree.length - 1)
                        res.append(", ");
                }
                res.append(']');
                return res.toString();
            }
        }
    
        private SegmentTree<Integer> segTree;
    
        public NumArray(int[] nums) {
    
            if(nums.length != 0){
                Integer[] data = new Integer[nums.length];
                for(int i = 0 ; i < nums.length ; i ++)
                    data[i] = nums[i];
                segTree = new SegmentTree<>(data, (a, b) -> a + b);
            }
        }
    
        public void update(int i, int val) {
            if(segTree == null)
                throw new IllegalArgumentException("Error");
            segTree.set(i, val);
        }
    
        public int sumRange(int i, int j) {
            if(segTree == null)
                throw new IllegalArgumentException("Error");
            return segTree.query(i, j);
        }
    }
    
    

    参考:
    https://blog.csdn.net/zearot/article/details/52280189

    https://github.com/raywenderlich/swift-algorithm-club/tree/master/Segment%20Tree

    https://blog.csdn.net/johnny901114/article/details/80643017

    完整代码

    相关文章

      网友评论

        本文标题:数据结构-线段树

        本文链接:https://www.haomeiwen.com/subject/qtgoiqtx.html