之前已经介绍了Tushare金融大数据社区,Tushare_to_Excel可以实现Tushare金融数据与Excel的对接,无需编程基础。本篇文章利用Tushare新闻联播接口,学习一下词云的绘制。
新闻联播
Tushare_CCTV_news:
https://waditu.com/document/2?doc_id=154
姿势讲解
选取的数据:2020年2月19日-2020年2月26日的新闻联播文字稿
- 安装python工具
- 通过tushare获取cctv_news
- 使用jieba分词进行关键字词提取
- 根据提取关键字词绘制词云
词云展示
image imagePY代码
# -*- coding: utf-8 -*-
import datetime
import os
import re
import time
import jieba.analyse
import numpy as np
import pandas as pd
import tushare as ts
from PIL import Image
from wordcloud import WordCloud
# 基础变量设置-可自行修改
# tushare_token获取链接:https://tushare.pro/register?reg=278708
tushare_token = 'd3276c7ba97ac3c839dcedd6b1c74d828b6286793326929673bd1c21'
day_start = r'20200219' # 起始日期
day_end = r'20200226' # 结束日期
# 获取当期时间和当前路径
now_time = datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d_%H%M%S')
now_path = os.path.abspath(os.curdir)
# 计算时间段包含的日期
def calculate_days(day_start,day_end):
day_start = datetime.datetime.strptime(day_start,'%Y%m%d')
day_end = datetime.datetime.strptime(day_end,'%Y%m%d')
day_list = []
while day_start <= day_end:
day = day_start.strftime('%Y%m%d')
day_list.append(day)
day_start += datetime.timedelta(days=1) # 下一个日期
return day_list
# 通过tushare获取cctv_news
def get_news(day_list):
pro = ts.pro_api(tushare_token)
df_list = []
for d in range(len(day_list)): # 开始遍历每一个日期
print('{}/{} now is getting the news of {}...'.format(d+1,len(day_list),day_list[d]))
df = pro.cctv_news(date = day_list[d]) # CCTV新闻联播
df_list.append(df)
cctvnews_file = now_path + '\\' + r'cctvnews_{}.csv'.format(day_list[d])
df.to_csv(cctvnews_file,encoding='utf-8-sig') # 把每天的cctv_news保存到CSV
time.sleep(0.5)
return df_list
# 合并所选时间段cctv_news的内容
def get_content(df_list):
df_all = pd.concat(df_list) # 连接函数concat
df_all = df_all.reset_index() # 重置索引
series_content = df_all['content'] # 提取表格的content列
content_string = ''
for content in series_content: # 遍历Series中的每一行congtent(每一天的content)
content = str(content) # 转为字符串
content = re.sub("[\s+\.\!\/_,$%^*(+\"\']+|[+——!,。?、~@#¥%……&*()]+", "",content) # 去除标点符号
content_string = content_string + content # 汇总
return content_string
# 使用jieba对cctv_news进行关键字词提取
def split_word(content_string):
result=jieba.analyse.textrank(content_string,topK=300,withWeight=True)
stopwords=['中国','全面','表示','会议','单位','企业','方式','国家'] # 停用词列表
keywords = dict()
for i in result:
if i[0] in stopwords:
pass
else:
keywords[i[0]]=i[1]
return keywords
# 根据提取关键字词绘制词云
def creat_wordcloud(keywords):
font = r'C:\Windows\Fonts\simfang.ttf'
image= Image.open(now_path+r'\map_mask.png')
mask = np.array(image)
wordcloud_cctvnews = WordCloud(collocations=False,
font_path=font,
width=2400,
height=2400,
margin=2,
background_color='white',
mask = mask).generate_from_frequencies(keywords)
# wordcloud_cctvnews = WordCloud(font_path=font).generate(keywords)
wordcloud_cctvnews.to_file(now_path + r'\\cctvnews_{}.jpg'.format(now_time))
print('Cctvnews wordcloud has been creat successfully.')
if __name__ == "__main__":
day_list = calculate_days(day_start,day_end)
df_list = get_news(day_list)
content_string = get_content(df_list)
# with open("test.txt","w") as f:
# f.write(content_string)
# with open("test.txt","r") as f:
# content_string = f.read()
keywords = split_word(content_string)
creat_wordcloud(keywords)
网友评论