美文网首页
TypeError: forward() got multipl

TypeError: forward() got multipl

作者: 教训小磊 | 来源:发表于2022-12-08 16:28 被阅读0次

基于mmsegmentation训练完成语义分割模型之后,需要将pytorch模型转换到onnx模型,mmsegmentation提供了pytorch2onnx.py的转化脚本,但是运行后会报错。
TypeError: forward() got multiple values for argument 'img_metas'
修改如下:

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import warnings
from functools import partial

import mmcv
import numpy as np
import onnxruntime as rt
import torch
import torch._C
import torch.serialization
from mmcv import DictAction
from mmcv.onnx import register_extra_symbolics
from mmcv.runner import load_checkpoint
from torch import nn

from mmseg.apis import show_result_pyplot
from mmseg.apis.inference import LoadImage
from mmseg.datasets.pipelines import Compose
from mmseg.models import build_segmentor
from mmseg.ops import resize

torch.manual_seed(3)


def _convert_batchnorm(module):
    module_output = module
    if isinstance(module, torch.nn.SyncBatchNorm):
        module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
                                             module.momentum, module.affine,
                                             module.track_running_stats)
        if module.affine:
            module_output.weight.data = module.weight.data.clone().detach()
            module_output.bias.data = module.bias.data.clone().detach()
            # keep requires_grad unchanged
            module_output.weight.requires_grad = module.weight.requires_grad
            module_output.bias.requires_grad = module.bias.requires_grad
        module_output.running_mean = module.running_mean
        module_output.running_var = module.running_var
        module_output.num_batches_tracked = module.num_batches_tracked
    for name, child in module.named_children():
        module_output.add_module(name, _convert_batchnorm(child))
    del module
    return module_output


def _demo_mm_inputs(input_shape, num_classes):
    """Create a superset of inputs needed to run test or train batches.

    Args:
        input_shape (tuple):
            input batch dimensions
        num_classes (int):
            number of semantic classes
    """
    (N, C, H, W) = input_shape
    rng = np.random.RandomState(0)
    imgs = rng.rand(*input_shape)
    segs = rng.randint(
        low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
    img_metas = [{
        'img_shape': (H, W, C),
        'ori_shape': (H, W, C),
        'pad_shape': (H, W, C),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False,
    } for _ in range(N)]
    mm_inputs = {
        'imgs': torch.FloatTensor(imgs).requires_grad_(True),
        'img_metas': img_metas,
        'gt_semantic_seg': torch.LongTensor(segs)
    }
    return mm_inputs


def _prepare_input_img(img_path,
                       test_pipeline,
                       shape=None,
                       rescale_shape=None):
    # build the data pipeline
    if shape is not None:
        test_pipeline[1]['img_scale'] = (shape[1], shape[0])
    test_pipeline[1]['transforms'][0]['keep_ratio'] = False
    test_pipeline = [LoadImage()] + test_pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img_path)
    data = test_pipeline(data)
    imgs = data['img']
    img_metas = [i.data for i in data['img_metas']]

    if rescale_shape is not None:
        for img_meta in img_metas:
            img_meta['ori_shape'] = tuple(rescale_shape) + (3, )

    mm_inputs = {'imgs': imgs, 'img_metas': img_metas}

    return mm_inputs


def _update_input_img(img_list, img_meta_list, update_ori_shape=False):
    # update img and its meta list
    N, C, H, W = img_list[0].shape
    img_meta = img_meta_list[0][0]
    img_shape = (H, W, C)
    if update_ori_shape:
        ori_shape = img_shape
    else:
        ori_shape = img_meta['ori_shape']
    pad_shape = img_shape
    new_img_meta_list = [[{
        'img_shape':
        img_shape,
        'ori_shape':
        ori_shape,
        'pad_shape':
        pad_shape,
        'filename':
        img_meta['filename'],
        'scale_factor':
        (img_shape[1] / ori_shape[1], img_shape[0] / ori_shape[0]) * 2,
        'flip':
        False,
    } for _ in range(N)]]

    return img_list, new_img_meta_list


def pytorch2onnx(model,
                 mm_inputs,
                 opset_version=11,
                 show=False,
                 output_file='tmp.onnx',
                 verify=False,
                 dynamic_export=False):
    """Export Pytorch model to ONNX model and verify the outputs are same
    between Pytorch and ONNX.

    Args:
        model (nn.Module): Pytorch model we want to export.
        mm_inputs (dict): Contain the input tensors and img_metas information.
        opset_version (int): The onnx op version. Default: 11.
        show (bool): Whether print the computation graph. Default: False.
        output_file (string): The path to where we store the output ONNX model.
            Default: `tmp.onnx`.
        verify (bool): Whether compare the outputs between Pytorch and ONNX.
            Default: False.
        dynamic_export (bool): Whether to export ONNX with dynamic axis.
            Default: False.
    """
    model.cpu().eval()
    test_mode = model.test_cfg.mode

    if isinstance(model.decode_head, nn.ModuleList):
        num_classes = model.decode_head[-1].num_classes
    else:
        num_classes = model.decode_head.num_classes

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    img_list = [img[None, :] for img in imgs]
    img_meta_list = [[img_meta] for img_meta in img_metas]
    # update img_meta
    img_list, img_meta_list = _update_input_img(img_list, img_meta_list)

    # replace original forward function
    origin_forward = model.forward
    # model.forward = partial(
    #     model.forward,
    #     img_metas=img_meta_list,
    #     return_loss=False,
    #     rescale=True)
    dynamic_axes = None
    if dynamic_export:
        if test_mode == 'slide':
            dynamic_axes = {'input': {0: 'batch'}, 'output': {1: 'batch'}}
        else:
            dynamic_axes = {
                'input': {
                    0: 'batch',
                    2: 'height',
                    3: 'width'
                },
                'output': {
                    1: 'batch',
                    2: 'height',
                    3: 'width'
                }
            }

    register_extra_symbolics(opset_version)
    with torch.no_grad():
        torch.onnx.export(
            model,
            (img_list, img_meta_list, False, dict(rescale=True)),
            output_file,
            input_names=['input'],
            output_names=['output'],
            export_params=True,
            keep_initializers_as_inputs=False,
            verbose=show,
            opset_version=opset_version,
            dynamic_axes=dynamic_axes)
        print(f'Successfully exported ONNX model: {output_file}')
    model.forward = origin_forward

    if verify:
        # check by onnx
        import onnx
        onnx_model = onnx.load(output_file)
        onnx.checker.check_model(onnx_model)

        if dynamic_export and test_mode == 'whole':
            # scale image for dynamic shape test
            img_list = [resize(_, scale_factor=1.5) for _ in img_list]
            # concate flip image for batch test
            flip_img_list = [_.flip(-1) for _ in img_list]
            img_list = [
                torch.cat((ori_img, flip_img), 0)
                for ori_img, flip_img in zip(img_list, flip_img_list)
            ]

            # update img_meta
            img_list, img_meta_list = _update_input_img(
                img_list, img_meta_list, test_mode == 'whole')

        # check the numerical value
        # get pytorch output
        with torch.no_grad():
            pytorch_result = model(img_list, img_meta_list, return_loss=False)
            pytorch_result = np.stack(pytorch_result, 0)

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 1)
        sess = rt.InferenceSession(output_file)
        onnx_result = sess.run(
            None, {net_feed_input[0]: img_list[0].detach().numpy()})[0][0]
        # show segmentation results
        if show:
            import os.path as osp

            import cv2
            img = img_meta_list[0][0]['filename']
            if not osp.exists(img):
                img = imgs[0][:3, ...].permute(1, 2, 0) * 255
                img = img.detach().numpy().astype(np.uint8)
                ori_shape = img.shape[:2]
            else:
                ori_shape = LoadImage()({'img': img})['ori_shape']

            # resize onnx_result to ori_shape
            onnx_result_ = cv2.resize(onnx_result[0].astype(np.uint8),
                                      (ori_shape[1], ori_shape[0]))
            show_result_pyplot(
                model,
                img, (onnx_result_, ),
                palette=model.PALETTE,
                block=False,
                title='ONNXRuntime',
                opacity=0.5)

            # resize pytorch_result to ori_shape
            pytorch_result_ = cv2.resize(pytorch_result[0].astype(np.uint8),
                                         (ori_shape[1], ori_shape[0]))
            show_result_pyplot(
                model,
                img, (pytorch_result_, ),
                title='PyTorch',
                palette=model.PALETTE,
                opacity=0.5)
        # compare results
        np.testing.assert_allclose(
            pytorch_result.astype(np.float32) / num_classes,
            onnx_result.astype(np.float32) / num_classes,
            rtol=1e-5,
            atol=1e-5,
            err_msg='The outputs are different between Pytorch and ONNX')
        print('The outputs are same between Pytorch and ONNX')


def parse_args():
    parser = argparse.ArgumentParser(description='Convert MMSeg to ONNX')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('--checkpoint', help='checkpoint file', default=None)
    parser.add_argument(
        '--input-img', type=str, help='Images for input', default=None)
    parser.add_argument(
        '--show',
        action='store_true',
        help='show onnx graph and segmentation results')
    parser.add_argument(
        '--verify', action='store_true', help='verify the onnx model')
    parser.add_argument('--output-file', type=str, default='tmp.onnx')
    parser.add_argument('--opset-version', type=int, default=11)
    parser.add_argument(
        '--shape',
        type=int,
        nargs='+',
        default=None,
        help='input image height and width.')
    parser.add_argument(
        '--rescale_shape',
        type=int,
        nargs='+',
        default=None,
        help='output image rescale height and width, work for slide mode.')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='Override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    parser.add_argument(
        '--dynamic-export',
        action='store_true',
        help='Whether to export onnx with dynamic axis.')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    cfg.model.pretrained = None

    if args.shape is None:
        img_scale = cfg.test_pipeline[1]['img_scale']
        input_shape = (1, 3, img_scale[1], img_scale[0])
    elif len(args.shape) == 1:
        input_shape = (1, 3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (
            1,
            3,
        ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    test_mode = cfg.model.test_cfg.mode

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    segmentor = build_segmentor(
        cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
    # convert SyncBN to BN
    segmentor = _convert_batchnorm(segmentor)

    if args.checkpoint:
        checkpoint = load_checkpoint(
            segmentor, args.checkpoint, map_location='cpu')
        segmentor.CLASSES = checkpoint['meta']['CLASSES']
        segmentor.PALETTE = checkpoint['meta']['PALETTE']

    # read input or create dummpy input
    if args.input_img is not None:
        preprocess_shape = (input_shape[2], input_shape[3])
        rescale_shape = None
        if args.rescale_shape is not None:
            rescale_shape = [args.rescale_shape[0], args.rescale_shape[1]]
        mm_inputs = _prepare_input_img(
            args.input_img,
            cfg.data.test.pipeline,
            shape=preprocess_shape,
            rescale_shape=rescale_shape)
    else:
        if isinstance(segmentor.decode_head, nn.ModuleList):
            num_classes = segmentor.decode_head[-1].num_classes
        else:
            num_classes = segmentor.decode_head.num_classes
        mm_inputs = _demo_mm_inputs(input_shape, num_classes)

    # convert model to onnx file
    pytorch2onnx(
        segmentor,
        mm_inputs,
        opset_version=args.opset_version,
        show=args.show,
        output_file=args.output_file,
        verify=args.verify,
        dynamic_export=args.dynamic_export)

    # Following strings of text style are from colorama package
    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    white_background = '\x1b[107m'

    msg = white_background + bright_style + red_text
    msg += 'DeprecationWarning: This tool will be deprecated in future. '
    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    msg += reset_style
    warnings.warn(msg)

我用的pytorch版本是1.12的,据说这个版本会报错。
只要将原来mmsegmentation提供了pytorch2onnx.py 换成上面的代码就可以转化了。

相关文章

网友评论

      本文标题:TypeError: forward() got multipl

      本文链接:https://www.haomeiwen.com/subject/qzdafdtx.html