kafka的分区消费模型
分区消费模型是kafka的消费者编程模型。其模型如下所示:
主要是一个consumer对应一个分区。而分区消费的伪代码如下所示:
2017-05-07_111849.pngkafka的组消费模型
kafka按照组进行消费的时候一个kafka组中的消费者可以获取到kafka集群中的所有数据以供消费。
组消费模型的伪代码描述如下:
- 上面的流数代表每个consumer组里面包含的consumer实例个数。
kafka Topic的分配算法如下所示:
消费模型的对比:
- 分区消费模型:较为灵活,但需要自己处理各种异常情况;且需要自己管理offset以实现消息传递的其他语义。
- 组消费模型:更加简单,但不灵活,不需要自己处理异常,不需要自己管理offset,其只能实现kafka默认的最少一次消息传递语义(可能会发生重复)。
- 消息传递语义有三种:最少一次(消费者收到的消息可能会重复),最多一个(消费者可能收不到这条消息),有且仅有一次(不会发生重复也不会丢失)
分区消费模型的python实现
eversilver@debian:~/silverTest/kafka/kafka/projects/consumer/partition$ cat partition_consumer.py
#!/usr/bin/env python
# coding=utf-8
import threading
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
class Consumer(threading.Thread):
daemon=True
def __init__(self, partition_index):
threading.Thread.__init__(self)
self.part = [partition_index]
self.__offset = 0
def run(self):
client = KafkaClient("192.168.128.128:19092,192.168.128.129:19092")
consumer=SimpleConsumer(client,"test-group","myTest",auto_commit=False,partitions=self.part)
consumer.seek(0,0)
while True:
message = consumer.get_message(True, 60)
self.__offset = message.offset
print (message.message.value)
eversilver@debian:~/silverTest/kafka/kafka/projects/consumer/partition$ cat main.py
#!/usr/bin/env python
# coding=utf-8
import logging, time
import partition_consumer
def main():
threads = []
partition = 3
for index in range(partition):
threads.append(partition_consumer.Consumer(index))
for t in threads:
t.start()
time.sleep(50000)
if __name__ == '__main__':
main()
组消费模型的python实现
eversilver@debian:~/silverTest/kafka/kafka/projects/consumer/group$ cat group_consumer.py
#!/usr/bin/env python
# coding=utf-8
import threading
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
class Consumer(threading.Thread):
daemon = True
def run(self):
client = KafkaClient("192.168.128.128:19092,192.168.128.129:19092,192.168.128.130:19092")
consumer = SimpleConsumer(client, "test-group", "mytest")
for message in consumer:
print(message.message.value)
eversilver@debian:~/silverTest/kafka/kafka/projects/consumer/group$ cat main.py
#!/usr/bin/env python
# coding=utf-8
import group_consumer
import time
def main():
consumer_thread = group_consumer.Consumer()
consumer_thread.start()
time.sleep(500000)
if __name__ == '__main__':
main()
python客户端参数调优
- fetch_size_bytes:从服务器获取得到的单个包的大小
- buffer_size:kafka客户端缓冲区大小(一次最多可以从服务器获取的数据大小)
- Group:分组消费的分组名
- auto_commit:offset是否自动进行提交(一般用于分区消费模型)
分组消费模式java实现
package kafka.consumer.group;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
public class ConsumerTest implements Runnable {
private KafkaStream m_stream;
private int m_threadNumber;
public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
m_threadNumber = a_threadNumber;
m_stream = a_stream;
}
public void run() {
ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
while (it.hasNext()){
System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
}
System.out.println("Shutting down Thread: " + m_threadNumber);
}
}
package kafka.consumer.group;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
public class GroupConsumerTest extends Thread {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor;
public GroupConsumerTest(String a_zookeeper, String a_groupId, String a_topic){
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
}
public void shutdown() {
if (consumer != null) consumer.shutdown();
if (executor != null) executor.shutdown();
try {
if (!executor.awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS)) {
System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
}
} catch (InterruptedException e) {
System.out.println("Interrupted during shutdown, exiting uncleanly");
}
}
public void run(int a_numThreads) {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);
// now launch all the threads
//
executor = Executors.newFixedThreadPool(a_numThreads);
// now create an object to consume the messages
//
int threadNumber = 0;
for (final KafkaStream stream : streams) {
executor.submit(new ConsumerTest(stream, threadNumber));
threadNumber++;
}
}
private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "40000");
props.put("zookeeper.sync.time.ms", "2000");
props.put("auto.commit.interval.ms", "1000");
return new ConsumerConfig(props);
}
public static void main(String[] args) {
if(args.length < 1){
System.out.println("Please assign partition number.");
}
String zooKeeper = "10.206.216.13:12181,10.206.212.14:12181,10.206.209.25:12181";
String groupId = "jikegrouptest";
String topic = "jiketest";
int threads = Integer.parseInt(args[0]);
GroupConsumerTest example = new GroupConsumerTest(zooKeeper, groupId, topic);
example.run(threads);
try {
Thread.sleep(Long.MAX_VALUE);
} catch (InterruptedException ie) {
}
example.shutdown();
}
}
分区消费模式的java实现
package kafka.consumer.partition;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class PartitionConsumerTest {
public static void main(String args[]) {
PartitionConsumerTest example = new PartitionConsumerTest();
long maxReads = Long.MAX_VALUE;
String topic = "jiketest";
if(args.length < 1){
System.out.println("Please assign partition number.");
}
List<String> seeds = new ArrayList<String>();
String hosts="10.206.216.13,10.206.212.14,10.206.209.25";
String[] hostArr = hosts.split(",");
for(int index = 0;index < hostArr.length;index++){
seeds.add(hostArr[index].trim());
}
int port = 19092;
int partLen = Integer.parseInt(args[0]);
for(int index=0;index < partLen;index++){
try {
example.run(maxReads, topic, index/*partition*/, seeds, port);
} catch (Exception e) {
System.out.println("Oops:" + e);
e.printStackTrace();
}
}
}
private List<String> m_replicaBrokers = new ArrayList<String>();
public PartitionConsumerTest() {
m_replicaBrokers = new ArrayList<String>();
}
public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception {
// find the meta data about the topic and partition we are interested in
//
PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
System.out.println("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
System.out.println("Can't find Leader for Topic and Partition. Exiting");
return;
}
String leadBroker = metadata.leader().host();
String clientName = "Client_" + a_topic + "_" + a_partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName);
int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
}
FetchRequest req = new FetchRequestBuilder()
.clientId(clientName)
.addFetch(a_topic, a_partition, readOffset, 100000) // Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
.build();
FetchResponse fetchResponse = consumer.fetch(req);
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
if (numErrors > 5) break;
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for the last element to reset
readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
continue;
}
numErrors = 0;
long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
if (consumer != null) consumer.close();
}
public static long getLastOffset(SimpleConsumer consumer, String topic, int partition,
long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) );
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
// first time through if the leader hasn't changed give ZooKeeper a second to recover
// second time, assume the broker did recover before failover, or it was a non-Broker issue
//
goToSleep = true;
} else {
return metadata.leader().host();
}
if (goToSleep) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
System.out.println("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
}
private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop:
for (String seed : a_seedBrokers) {
SimpleConsumer consumer = null;
try {
consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop;
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
+ ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null) consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
for (kafka.cluster.Broker replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
}
}
return returnMetaData;
}
}
java客户端的参数调优
- fetchSize:从服务器获取的单包大小
- bufferSize:kafka客户端缓冲区大小
- group.id:分组消费分组名(用于实现复制消费,每个分组都能取得全量的数)
网友评论