前言
很高兴遇见你~
HashMap是一个非常重要的集合,日常使用也非常的频繁,同时也是面试重点。本文并不打算讲解基础的使用api,而是深入HashMap的底层,讲解关于HashMap的重点知识。需要读者对散列表和HashMap有一定的认识。
HashMap本质上是一个散列表,那么就离不开散列表的三大问题: 散列函数、哈希冲突、扩容方案 ;同时作为一个数据结构,必须考虑多线程并发访问的问题,也就是 线程安全 。这四大重点则为学习HashMap的重点,也是HashMap设计的重点。
HashMap属于Map集合体系的一部分,同时继承了Serializable接口可以被序列化,继承了Cloneable接口可以被复制。他的的继承结构如下:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题HashMap并不是全能的,对于一些特殊的情景下的需求官方拓展了一些其他的类来满足,如线程安全的ConcurrentHashMap、记录插入顺序的LinkHashMap、给key排序的TreeMap等。
文章内容主要讲解四大重点: 散列函数、哈希冲突、扩容方案、线程安全 ,再补充关键的源码分析和相关的问题。
本文所有内容如若未特殊说明,均为JDK1.8版本。
哈希函数
哈希函数的目标是计算key在数组中的下标。判断一个哈希函数的标准是:散列是否均匀、计算是否简单。
HashMap哈希函数的步骤:
- 对key对象的 hashcode 进行扰动
- 通过取模求得数组下标
扰动是为了让hashcode的随机性更高,第二步取模就不会让所以的key都聚集在一起,提高散列均匀度。扰动可以看到 hash() 方法:
static final int hash(Object key) {
int h;
// 获取到key的hashcode,在高低位异或运算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
也就是低16位是和高16位进行异或,高16位保持不变。一般的数组长度都会比较短,取模运算中只有低位参与散列;高位与地位进行异或,让高位也得以参与散列运算,使得散列更加均匀。具体运算如下图(图中为了方便采用8位进行演示,32位同理):
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题对hashcode扰动之后需要对结果进行取模。HashMap在jdk1.8并不是简单使用 % 进行取模,而是采用了另外一种更加高性能的方法。HashMap控制数组长度为2的整数次幂,好处是对hashcode进行求余运算和让hashcode与数组长度-1进行位与运算是相同的效果。如下图:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题但位与运算的效率却比求余高得多,从而提升了性能。在扩容运算中也利用到了此特性,后面会讲。取模运算的源码看到 putVal() 方法,该方法在 put() 方法中被调用:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
...
// 与数组长度-1进行位与运算,得到下标
if ((p = tab[i = (n - 1) & hash]) == null)
...
}
完整的hash计算过程可以参考下图:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题上面我们提到HashMap的数组长度为2的整数次幂,那么HashMap是如何控制数组的长度为2的整数次幂的?修改数组长度有两种情况:
- 初始化时指定的长度
- 扩容时的长度增量
先看第一种情况。默认情况下,如未在HashMap构造器中指定长度,则初始长度为16。 16是一个较为合适的经验值,他是2的整数次幂,同时太小会频繁触发扩容、太大会浪费空间 。如果指定一个非2的整数次幂,会自动转化成 大于该指定数的最小2的整数次幂 。如指定6则转化为8,指定11则转化为16。结合源码来分析,当我们初始化指定一个非2的整数次幂长度时,HashMap会调用 tableSizeFor() 方法:
public HashMap(int initialCapacity, float loadFactor) {
...
this.loadFactor = loadFactor;
// 这里调用了tableSizeFor方法
this.threshold = tableSizeFor(initialCapacity);
}
static final int tableSizeFor(int cap) {
// 注意这里必须减一
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
tableSizeFor() 方法的看起来很复杂,作用是使得最高位1后续的所有位都变为1,最后再+1则得到刚好大于initialCapacity的最小2的整数次幂数。如下图(这里使用了8位进行模拟,32位也是同理):
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题那为什么必须要对 cap 进行 -1 之后再进行运算呢?如果指定的数刚好是2的整数次幂,如果没有-1结果会变成比他大两倍的数,如下:
00100 --高位1之后全变1--> 00111 --加1---> 01000
第二种改变数组长度的情况是扩容。HashMap每次扩容的大小都是原来的两倍,控制了数组大小一定是2的整数次幂,相关源码如下:
final Node<K,V>[] resize() {
...
if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 设置为原来的两倍
newThr = oldThr << 1;
...
}
小结:
- HashMap通过高16位与低16位进行异或运算来让高位参与散列,提高散列效果;
- HashMap控制数组的长度为2的整数次幂来简化取模运算,提高性能;
- HashMap通过控制初始化的数组长度为2的整数次幂、扩容为原来的2倍来控制数组长度一定为2的整数次幂。
哈希冲突解决方案
再优秀的hash算法永远无法避免出现hash冲突。hash冲突指的是两个不同的key经过hash计算之后得到的数组下标是相同的。解决hash冲突的方式很多,如开放定址法、再哈希法、公共溢出表法、链地址法。HashMap采用的是链地址法,jdk1.8之后还增加了红黑树的优化,如下图:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题出现冲突后会在当前节点形成链表,而当链表过长之后,会自动转化成红黑树提高查找效率。红黑树是一个查找效率很高的数据结构,时间复杂度为O(logN),但红黑树只有在数据量较大时才能发挥它的优势。关于红黑树的转化,HashMap做了以下限制
- 当链表的长度>=8且数组长度>=64时,会把链表转化成红黑树。
- 当链表长度>=8,当数组长度<64时,会优先进行扩容,而不是转化成红黑树。
- 当红黑树节点数<=6,自动转化成链表。
那就有了以下问题:
- 为什么需要数组长度到64才会转化红黑树?当数组长度较短时,如16,链表长度达到8已经是占用了最大限度的50%,意味着负载已经快要达到上限,此时如果转化成红黑树,之后的扩容又会再一次把红黑树拆分平均到新的数组中,这样非但没有带来性能的好处,反而会降低性能。所以在数组长度低于64时,优先进行扩容。
- 为什么要大于等于8转化为红黑树,而不是7或9?树节点的比普通节点更大,在链表较短时红黑树并未能明显体现性能优势,反而会浪费空间,在链表较短是采用链表而不是红黑树。在理论数学计算中(装载因子=0.75),链表的长度到达8的概率是百万分之一;把7作为分水岭,大于7转化为红黑树,小于7转化为链表。红黑树的出现是为了在某些极端的情况下,抗住大量的hash冲突,正常情况下使用链表是更加合适的。
注意,红黑树在jdk1.8之后出现的,jdk1.7采用的是数组+链表模式。
小结:
- HashMap采用链地址法,当发生冲突时会转化为链表,当链表过长会转化为红黑树提高效率。
- HashMap对红黑树进行了限制,让红黑树只有在极少数极端情况下进行抗压。
扩容方案
当HashMap中的数据越来越多,那么发生hash冲突的概率也就会越来越高,通过数组扩容可以利用空间换时间,保持查找效率在常数时间复杂度。那什么时候进行扩容?由HashMap的一个关键参数控制: 装载因子 。
装载因子=HashMap中节点数/数组长度,他是一个比例值。当HashMap中节点数到达装载因子这个比例时,就会触发扩容;也就是说,装载因子控制了当前数组能够承载的节点数的阈值 。如数组长度是16,装载因子是0.75,那么可容纳的节点数是16*0.75=12。装载因子的数值大小需要仔细权衡。装载因子越大,数组利用率越高,同时发生哈希冲突的概率也就越高;装载因子越小,数组利用率降低,但发生哈希冲突的概率也降低了。所以 装载因子的大小需要权衡空间与时间之间的关系 。在理论计算中,0.75是一个比较合适的数值,大于0.75哈希冲突的概率呈指数级别上升,而小于0.75冲突减少并不明显。HashMap中的装载因子的默认大小是0.75,没有特殊要求的情况下,不建议修改他的值。
那么在到达阈值之后,HashMap是如何进行扩容的呢?HashMap会把数组长度扩展为原来的两倍,再把旧数组的数据迁移到新的数组,而HashMap针对迁移做了优化: 使用HashMap数组长度是2的整数次幂的特点,以一种更高效率的方式完成数据迁移 。
JDK1.7之前的数据迁移比较简单,就是遍历所有的节点,把所有的节点依次通过hash函数计算新的下标,再插入到新数组的链表中。这样会有两个缺点: 1、每个节点都需要进行一次求余计算;2、插入到新的数组时候采用的是头插入法,在多线程环境下会形成链表环。 jdk1.8之后进行了优化,原因在于他控制数组的长度始终是2的整数次幂,每次扩展数组都是原来的2倍,带来的好处是key在新的数组的hash结果只有两种:在原来的位置,或者在原来位置+原数组长度。具体为什么我们可以看下图:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题从图中我们可以看到,在新数组中的hash结果,仅仅取决于高一位的数值。如果高一位是0,那么计算结果就是在原位置,而如果是1,则加上原数组的长度即可。这样我们 只需要判断一个节点的高一位是1 or 0就可以得到他在新数组的位置,而不需要重复hash计算 。HashMap 把每个链表拆分成两个链表,对应原位置或原位置+原数组长度,再分别插入到新的数组中,保留原来的节点顺序 ,如下:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题前面还遗留一个问题:头插法会形成链表环。这个问题在线程安全部分讲解。
小结:
- 装载因子决定了HashMap扩容的阈值,需要权衡时间与空间,一般情况下保持0.75不作改动;
- HashMap扩容机制结合了数组长度为2的整数次幂的特点,以一种更高的效率完成数据迁移,同时避免头插法造成链表环。
线程安全
HashMap作为一个集合,主要功能则为CRUD,也就是增删查改数据,那么就肯定涉及到多线程并发访问数据的情况。并发产生的问题,需要我们特别关注。
HashMap并不是线程安全的,在多线程的情况下无法保证数据的一致性。举个例子:HashMap下标2的位置为null,线程A需要将节点X插入下标2的位置,在判断是否为null之后,线程被挂起;此时线程B把新的节点Y插入到下标2的位置;恢复线程A,节点X会直接插入到下标2,覆盖节点Y,导致数据丢失,如下图:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题jdk1.7及以前扩容时采用的是头插法,这种方式插入速度快,但在多线程环境下会造成链表环,而链表环会在下一次插入时找不到链表尾而发生死循环。限于篇幅,关于这个问题可参考 面试官:HashMap 为什么线程不安全? ,作者详细解答了关于HashMap的并发问题。jdk1.8之后扩容采用了尾插法,解决了这个问题,但并没有解决数据的一致性问题。
那如果结果数据一致性问题呢?解决这个问题有三个方案:
Collections.synchronizeMap()
ConcurrentHashMap
前两个方案的思路是相似的,均是每个方法中,对整个对象进行上锁。Hashtable是老一代的集合框架,很多的设计均以及落后,他在每一个方法中均加上了 synchronize 关键字保证线程安全
// Hashtable
public synchronized V get(Object key) {...}
public synchronized V put(K key, V value) {...}
public synchronized V remove(Object key) {...}
public synchronized V replace(K key, V value) {...}
...
第二种方法是返回一个 SynchronizedMap 对象,这个对象默认每个方法会锁住整个对象。如下源码:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题这里的mutex是什么呢?直接看到构造器:
final Object mutex; // Object on which to synchronize
SynchronizedMap(Map<K,V> m) {
this.m = Objects.requireNonNull(m);
// 默认为本对象
mutex = this;
}
SynchronizedMap(Map<K,V> m, Object mutex) {
this.m = m;
this.mutex = mutex;
}
可以看到默认锁的就是本身,效果和Hashtable其实是一样的。这种简单粗暴锁整个对象的方式造成的后果是:
- 锁是非常重量级的,会严重影响性能。
- 同一时间只能有一个线程进行读写,限制了并发效率。
ConcurrentHashMap的设计就是为了解决此问题。他通过降低锁粒度+CAS的方式来提高效率。简单来说,ConcurrentHashMap锁的并不是整个对象,而是一个 数组的一个节点 ,那么其他线程访问数组其他节点是不会互相影响,极大提高了并发效率;同时ConcurrentHashMap的操作并不需要获取锁,如下图:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题关于ConcurrentHashMap和Hashtable的更多内容,限于篇幅,我会在另一篇文章讲解。
那么,使用了上述的三种解决方案是不是绝对线程安全?先观察下面的代码:
ConcurrentHashMap<String, String> map = new ConcurrentHashMap<>();
map.put("abc","123");
Thread1:
if (map.containsKey("abc")){
String s = map.get("abc");
}
Thread2:
map.remove("abc");
当Thread1调用containsKey之后释放锁,Thread2获得锁并把“abc”移除再释放锁,这个时候Thread1读取到的s就是一个null了,也就出现了问题了。所以 ConcurrentHashMap 类或者 Collections.synchronizeMap() 方法或者Hashtable都只能在一定的限度上保证线程安全,而无法保证绝对线程安全。
关于线程安全,还有一个 fast-fail 问题,即快速失败。当使用HashMap的迭代器遍历HashMap时,如果此时HashMap发生了结构性改变,如插入新数据、移除数据、扩容等,那么Iteractor会抛出fast-fail异常,防止出现并发异常,在一定限度上保证了线程安全。如下源码:
final Node<K,V> nextNode() {
...
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
...
}
创建Iteractor对象时会记录HashMap的 modCount 变量,每当HashMap发生结构性改变时, modCount 会加1。在迭代时判断HashMap的 modCount 和自己保存的expectedModCount 是否一致即可判断是否发生了结构性改变。
fast-fail异常只能当做遍历时的一种安全保证,而不能当做多线程并发访问HashMap的手段。若有并发需求,还是需要使用上述的三种方法。
小结
- HashMap并不能保证线程安全,在多线程并发访问下会出现意想不到的问题,如数据丢失等
- HashMap1.8采用尾插法进行扩容,防止出现链表环导致的死循环问题
- 解决并发问题的的方案有 Hashtable 、 Collections.synchronizeMap() 、ConcurrentHashMap 。其中最佳解决方案是 ConcurrentHashMap
- 上述解决方案并不能完全保证线程安全
- 快速失败是HashMap迭代机制中的一种并发安全保证
源码解析
关键变量的理解
HashMap源码中有很多的内部变量,这些变量会在下面源码分析中经常出现,首先需要理解这些变量的意义。
// 存放数据的数组
transient Node<K,V>[] table;
// 存储的键值对数目
transient int size;
// HashMap结构修改的次数,主要用于判断fast-fail
transient int modCount;
// 最大限度存储键值对的数目(threshodl=table.length*loadFactor),也称为阈值
int threshold;
// 装载因子,表示可最大容纳数据数量的比例
final float loadFactor;
// 静态内部类,HashMap存储的节点类型;可存储键值对,本身是个链表结构。
static class Node<K,V> implements Map.Entry<K,V> {...}
扩容
HashMap源码中把初始化操作也放到了扩容方法中,因而扩容方法源码主要分为两部分:确定新的数组大小、迁移数据。详细的源码分析如下,我打了非常详细的注释,可选择查看。扩容的步骤在上述已经讲过了,读者可以自行结合源码,分析HashMap是如何实现上述的设计。
final Node<K,V>[] resize() {
// 变量分别是原数组、原数组大小、原阈值;新数组大小、新阈值
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 如果原数组长度大于0
if (oldCap > 0) {
// 如果已经超过了设置的最大长度(1<<30,也就是最大整型正数)
if (oldCap >= MAXIMUM_CAPACITY) {
// 直接把阈值设置为最大正数
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 设置为原来的两倍
newThr = oldThr << 1;
}
// 原数组长度为0,但最大限度不是0,把长度设置为阈值
// 对应的情况就是新建HashMap的时候指定了数组长度
else if (oldThr > 0)
newCap = oldThr;
// 第一次初始化,默认16和0.75
// 对应使用默认构造器新建HashMap对象
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果原数组长度小于16或者翻倍之后超过了最大限制长度,则重新计算阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 建立新的数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 循环遍历原数组,并给每个节点计算新的位置
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 如果他没有后继节点,那么直接使用新的数组长度取模得到新下标
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果是红黑树,调用红黑树的拆解方法
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
// 新的位置只有两种可能:原位置,原位置+老数组长度
// 把原链表拆成两个链表,然后再分别插入到新数组的两个位置上
// 不用多次调用put方法
else {
// 分别是原位置不变的链表和原位置+原数组长度位置的链表
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 遍历老链表,判断新增判定位是1or0进行分类
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 最后赋值给新的数组
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
// 返回新数组
return newTab;
}
添加数值
调用 put() 方法添加键值对,最终会调用 putVal() 来真正实现添加逻辑。代码解析如下:
public V put(K key, V value) {
// 获取hash值,再调用putVal方法插入数据
return putVal(hash(key), key, value, false, true);
}
// onlyIfAbsent表示是否覆盖旧值,true表示不覆盖,false表示覆盖,默认为false
// evict和LinkHashMap的回调方法有关,不在本文讨论范围
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
// tab是HashMap内部数组,n是数组的长度,i是要插入的下标,p是该下标对应的节点
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 判断数组是否是null或者是否是空,若是,则调用resize()方法进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 使用位与运算代替取模得到下标
// 判断当前下标是否是null,若是则创建节点直接插入,若不是,进入下面else逻辑
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// e表示和当前key相同的节点,若不存在该节点则为null
// k是当前数组下标节点的key
Node<K,V> e; K k;
// 判断当前节点与要插入的key是否相同,是则表示找到了已经存在的key
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 判断该节点是否是树节点,如果是调用红黑树的方法进行插入
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 最后一种情况是直接链表插入
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 长度大于等于8时转化为红黑树
// 注意,treeifyBin方法中会进行数组长度判断,
// 若小于64,则优先进行数组扩容而不是转化为树
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
break;
}
// 找到相同的直接跳出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 如果找到相同的key节点,则判断onlyIfAbsent和旧值是否为null
// 执行更新或者不操作,最后返回旧值
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
// 如果不是更新旧值,说明HashMap中键值对数量发生变化
// modCount数值+1表示结构改变
++modCount;
// 判断长度是否达到最大限度,如果是则进行扩容
if (++size > threshold)
resize();
// 最后返回null(afterNodeInsertion是LinkHashMap的回调)
afterNodeInsertion(evict);
return null;
}
代码中关于每个步骤有了详细的解释,这里来总结一下:
- 总体上分为两种情况:找到相同的key和找不到相同的key。找了需要判断是否更新并返回旧value,没找到需要插入新的Node、更新节点数并判断是否需要扩容。
- 查找分为三种情况:数组、链表、红黑树。数组下标i位置不为空且不等于key,那么就需要判断是否树节点还是链表节点并进行查找。
- 链表到达一定长度后需要扩展为红黑树,当且仅当链表长度>=8且数组长度>=64。
最后画一张图总体再加深一下整个流程的印象:
阿里二面:说一下Hashmap散列表的三大问题与线程安全问题其他问题
为什么jdk1.7以前控制数组的长度为素数,而jdk1.8之后却采用的是2的整数次幂?
答:素数长度可以有效减少哈希冲突;JDK1.8之后采用2的整数次幂是为了提高求余和扩容的效率,同时结合高低位异或的方法使得哈希散列更加均匀。
为何素数可以减少哈希冲突?若能保证key的hashcode在每个数字之间都是均匀分布,那么无论是素数还是合数都是相同的效果。例如hashcode在1~20均匀分布,那么无论长度是合数4,还是素数5,分布都是均匀的。而如果hashcode之间的间隔都是2,如1,3,5...,那么长度为4的数组,位置2和位置4两个下标无法放入数据,而长度为5的数组则没有这个问题。 长度为合数的数组会使间隔为其因子的hashcode聚集出现,从而使得散列效果降低 。详细的内容可以参考这篇博客: 算法分析:哈希表的大小为何是素数 ,这篇博客采用数据分析证实为什么素数可以更好地实现散列。
为什么插入HashMap的数据需要实现hashcode和equals方法?对这两个方法有什么要求?
答:通过hashcode来确定插入下标,通过equals比较来寻找数据;两个相等的key的hashcode必须相等,但拥有相同的hashcode的对象不一定相等。
这里需要区分好他们之间的区别:hashcode就像一个人的名,相同的人名字肯定相等,但是相同的名字不一定是同个人;equals比较内容是否相同,一般由对象覆盖重写,默认情况下比较的是引用地址;“==”引用队形比较的是引用地址是否相同,值对象比较的是值是否相同。
HashMap中需要使用hashcode来获取key的下标,如果两个相同的对象的hashcode不同,那么会造成HashMap中存在相同的key;所以equals返回相同的key他们的hashcode一定要相同。HashMap比较两个元素是否相同采用了三种比较方法结合: p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))) 。关于更加深入的讲解可以参考这篇文章: Java提高篇——equals()与hashCode()方法详解 ,作者非常详细地剖析了这些方法之间的区别。
最后
关于HashMap的内容很难在一篇文章讲完,他的设计到的内容非常多,如线程安全的设计可以延伸到ConcurrentHashMap与Hashtable,这两个类与HashMap的区别以及内部设计均非常重要,这些内容我将在另外的文章做补充。
最后,希望文章对你有帮助。如果觉得本文对你有帮助,可以点赞关注支持一下
网友评论