美文网首页
206. 区间求和 I

206. 区间求和 I

作者: 6默默Welsh | 来源:发表于2018-01-29 21:14 被阅读28次

    描述

    给定一个整数数组(下标由 0 到 n-1,其中 n 表示数组的规模),以及一个查询列表。每一个查询列表有两个整数 [start, end] 。 对于每个查询,计算出数组中从下标 start 到 end 之间的数的总和,并返回在结果列表中。

    注意事项

    在做此题前,建议先完成以下三题:线段树的构造线段树的查询,以及线段树的修改

    样例

    对于数组 [1,2,7,8,5],查询[(1,2),(0,4),(2,4)], 返回 [9,23,20]

    挑战

    O(logN) time for each query

    代码

    1. 无需拆分区间
    /**
     * Definition of Interval:
     * public classs Interval {
     *     int start, end;
     *     Interval(int start, int end) {
     *         this.start = start;
     *         this.end = end;
     *     }
     */
    
    
    public class Solution {
        /*
         * @param A: An integer list
         * @param queries: An query list
         * @return: The result list
         */
        class SegmentTreeNode {
            public int start;
            public int end;
            public long sum;
            SegmentTreeNode left;
            SegmentTreeNode right;
            public SegmentTreeNode(int start, int end, long sum) {
                this.start = start;
                this.end = end;
                this.sum = sum;
                this.left = null;
                this.right = null;
            }
        }
    
        public SegmentTreeNode build(int start, int end, int[] A) {
            if (start > end) {
                return null;
            }
        
            if (start == end) {
                return new SegmentTreeNode(start, end, A[start]);
            }
        
            SegmentTreeNode root = new SegmentTreeNode(start, end, 0);
            int mid = start + (end - start) / 2;
            root.left = build(start, mid, A);
            root.right = build(mid + 1, end, A);
            if (root.left != null) {
                root.sum += root.left.sum;
            }
            if (root.right != null) {
                root.sum += root.right.sum;
            }
            return root;
        }
    
        public long query(SegmentTreeNode root, int start, int end) {
            if (start <= root.start && end >= root.end) {
                return root.sum;
            }
        
            int mid = root.start + (root.end - root.start) / 2;
            long ans = 0;
            if (start <= mid) {
                ans += query(root.left, start, end);
            } 
            if (end > mid) {
                ans += query(root.right, start, end);
            }
        
            return ans;
        }
     
        SegmentTreeNode root;
        public List<Long> intervalSum(int[] A, List<Interval> queries) {
            root = build(0, A.length - 1, A);
            List<Long> list = new ArrayList<>();
            
            for (Interval num : queries) {
                long res = query(root, num.start, num.end);
                list.add(res);
            }
            
            return list;
        }
    }
    

    本题有个 bug 需要注意,如果 query 要求返回 long,那么在 SegmentTreeNode 的定义中要把 sum 声明为 long、

    1. 手动拆分区间
    public class Solution {
        /**
         *@param A, queries: Given an integer array and an query list
         *@return: The result list
         */
         class SegmentTreeNode {
            public int start, end;
            public Long sum;
            public SegmentTreeNode left, right;
            public SegmentTreeNode(int start, int end, Long sum) {
                  this.start = start;
                  this.end = end;
                  this.sum = sum;
                  this.left = this.right = null;
            }
        }
        public SegmentTreeNode build(int start, int end, int[] A) {
            // write your code here
            if(start > end) {  // check core case
                return null;
            }
            
            SegmentTreeNode root = new SegmentTreeNode(start, end, 0L);
            
            if(start != end) {
                int mid = (start + end) / 2;
                root.left = build(start, mid, A);
                root.right = build(mid+1, end, A);
                
                root.sum = root.left.sum + root.right.sum;
            } else {
                root.sum =  Long.valueOf(A[start]);
                
            }
            return root;
        }
        public Long query(SegmentTreeNode root, int start, int end) {
            // write your code here
            if(start == root.start && root.end == end) { // 相等 
                return root.sum;
            }
            
            
            int mid = (root.start + root.end)/2;
            Long leftsum = 0L, rightsum = 0L;
            // 左子区
            if(start <= mid) {
                if( mid < end) { // 分裂 
                    leftsum =  query(root.left, start, mid);
                } else { // 包含 
                    leftsum = query(root.left, start, end);
                }
            }
            // 右子区
            if(mid < end) { // 分裂 3
                if(start <= mid) {
                    rightsum = query(root.right, mid+1, end);
                } else { //  包含 
                    rightsum = query(root.right, start, end);
                } 
            }  
            // else 就是不相交
            return leftsum + rightsum;
        }
        public ArrayList<Long> intervalSum(int[] A, 
                                           ArrayList<Interval> queries) {
            // write your code here
            SegmentTreeNode root = build(0, A.length - 1, A);
            ArrayList ans = new ArrayList<Long>();
            for(Interval in : queries) {
                ans.add(query(root, in.start, in.end));
            }
            return ans;
        }
    }
    

    相关文章

      网友评论

          本文标题:206. 区间求和 I

          本文链接:https://www.haomeiwen.com/subject/rfmfzxtx.html