美文网首页程序员
TensorFlow 实现自编码器

TensorFlow 实现自编码器

作者: 羽恒 | 来源:发表于2017-07-15 18:33 被阅读107次

    自编码器简介


    深度学习在早期一度被认为是一种无监督的特征学(Unsupervised Feature Learning),模仿人脑对特征逐层抽象提取的过程
    1.无监督学习:不需要对标注数据就可以对数据进行一定程度的学习,这种学习是对数据内容的组织形式的学习,提取的是频繁出现的特征
    2.逐层抽象:特征是需要不断抽象的,就像人总是从简单基础概念开始学习,再到复杂的概念。深度学习也是一样,他从最简单的微观特征开始,不断抽象特征的层级,逐渐往复杂的宏观特征转变。

    • 自编码器(AUtoEncoder),顾名思义,既可以使用自身的高阶特征编码自己。
    • 自编码器其实也是一种神经网络,它的输入和输出是一致的,它借助稀疏编码的思想,目标是使用稀疏的一些高阶特征重新组合来重构自己。特点如下:

    1.期望输入和输出一致
    2.希望使用高阶特征来重构自己,而不只是复制像素点


    TensorFlow 实现自编码器

    • 实现标准的均匀分布的Xavier初始化器
    def xavier_init(fan_in,fan_out,constant = 1):
        low = -constant*np.sqrt(6.0/(fan_in+fan_out))
        high = constant*np.sqrt(6.0/(fan_in+fan_out))
        return tf.random_uniform((fan_in,fan_out),minval = low,maxval = high,dtype = tf.float32)
    
    • 定义去躁自编码器的class
    class AddAutoencoder(object):
        # - n_input:输入变量数
        #  - n_hidden:隐含层节点数
        # - transfer_function:隐含层激活函数,默认为softplus
        # - optimizer:优化器,默认为Adam
        # - scale:高斯噪声系数,默认为0.1
        
        def __init__(self,n_input,n_hidden,transfer_function = tf.nn.softplus,
                     optimizer = tf.train.AdamOptimizer(),scale = 0.1):
            self.n_input = n_input
            self.n_hidden = n_hidden
            self.transfer = transfer_function
            self.scale = tf.placeholder(tf.float32)
            self.training_scale = scale
            network_weights = self._initialize_weights()
            self.weights = network_weights
            self.x = tf.placeholder(tf.float32,[None,self.n_input])
            self.hidden = self.transfer(tf.add(tf.matmul(
                self.x+scale*tf.random_normal((n_input,)),
                self.weights['w1']),self.weights['b1']))
            self.reconstruction = tf.add(tf.matmul(self.hidden,
                                        self.weights['w2']),self.weights['b2'])
            self.cost = 0.5*tf.reduce_sum(tf.pow(tf.subtract(
                self.reconstruction,self.x),2.0))
            self.optimizer = optimizer.minimize(self.cost)
    
            init = tf.global_variables_initializer()
            self.sess = tf.Session()
            self.sess.run(init)
    
        # 参数初识化
        
        def _initialize_weights(self):
            all_weights = dict()
            all_weights['w1'] = tf.Variable(xavier_init(self.n_input,self.n_hidden))
            all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden],dtype = tf.float32))
            all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden,self.n_input],dtype = tf.float32))
            all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],dtype = tf.float32))
    
            return all_weights
        
        
        # 计算损失cost及进一步训练的函数
        # return:当前损失 
        
        def partial_fit(self,X):
            cost,opt = self.sess.run((self.cost,self.optimizer),
                                     feed_dict = {self.x:X,self.scale:self.training_scale})
            return cost
        
        # 对模型性能评测时的cost
        
        def calc_total_cost(self,X):
            return self.sess.run(self.cost,feed_dict={self.x:X,
                                                      self.scale:self.training_scale})
    
        
        # 获取抽象后的特征
        # return:自编码器隐含层的输出结果
        
        def transform(self,X):
            return self.sess.run(self.hidden,feed_dict = {self.x:X,self.scale:self.training_scale})
        
        # 隐含层的输出作为输入,将高阶特征复原为原始数据
        
        def generate(self,hidden = None):
            if hidden is None:
                hidden = np.random.normal(size = self.weights['w1'])
    
            return self.sess.run(self.reconstruction,feed_dict = {self.hidden:hidden})
    
        # 重构层,输入为原始数据,输出为复原后的数据
    
        def reconstruct(self,X):
            return self.sess.run(self.reconstruction,feed_dict = {self.x:X,self.scale:self.training_scale})
        
        # 获取隐含层的权重w1
        
        def generatetWeights(self):
            return self.sess.run(self.weights['w1'])
    
        # 获取隐含层的偏置系数b1
    
        def getBiases(self):
            return self.sess.run(self.weights['b1'])
    
    • 载入数据集(使用TensorFlow提供的示例数据)
    
    mnist = input_data.read_data_sets('MNIST_data',one_hot = True
    
    
    • 载入数据集(使用TensorFlow提供的示例数据)
    mnist = input_data.read_data_sets('MNIST_data',one_hot = True
    
    • 测试 训练数据标准化处理
    def standard_scale(X_train,X_test):
        preprocessor = prep.StandardScaler().fit(X_train)
        X_train = preprocessor.transform(X_train)
        X_test = preprocessor.transform(X_test)
        return X_train,X_test
    
    
    • 获取随机block数据
    def get_random_block_form_data(data,batch_size):
        start_index = np.random.randint(0,len(data)-batch_size)
        return data[start_index:(start_index+batch_size)]
    
    • 对训练集、测试集进行标准化变换
    X_train,X_test = standard_scale(mnist.train.images,mnist.test.images)
    
    
    • 设置常用参数:总训练样本数、最大训练轮数、batch_size数、显示损失间隔
    n_samples = int(mnist.train.num_examples)
    training_epochs = 20
    batch_size = 128
    display_step = 1
    
    • 创建AGN编码器实例
    autocode = AddAutoencoder(n_input = 784,
                             n_hidden = 200,
                             transfer_function = tf.nn.softplus,
                             optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
                             scale = 0.01)
    
    
    • 开始训练,并输出每次的损失cost、平均损失avg_cost
    for epoch in range(training_epochs):
        avg_cost = 0
        total_batch = int(n_samples/batch_size)
        for  i in  range(total_batch):
            batch_xs = get_random_block_form_data(X_train,batch_size)
    
            cost = autocode.partial_fit(batch_xs)
            avg_cost += cost / n_samples * batch_size
    
        if epoch%display_step == 0:
            print ('Epoch:','%04d' %(epoch+1),"cost=",
                   "{:.9f}".format(avg_cost))
    
        print ("Total cost:"+str(autocode.calc_total_cost(X_test)))
    

    相关文章

      网友评论

        本文标题:TensorFlow 实现自编码器

        本文链接:https://www.haomeiwen.com/subject/rfrzhxtx.html