1. Background
一句话概括 UDAF 的背景就是系统自带的聚合函数无法满足用户需求。
2. Basic
2.1 什么是 UDAF ?
UDAF 即自定义聚合函数。首先看一下什么是聚合函数:聚合函数即是指0行到多行的0个到多个列作为参数输入,返回单一值的函数。通俗的说就是多进一出。经常和 group by 子句一起用。比如 sum,count,avg 等都是很常见的系统聚合函数。
2.2 什么是 ObjectInspector ?
这个概念较为复杂,感兴趣的可以自己深入了解一下。简单的说,ObjectInspector 接口使得Hive可以不拘泥于一种特定数据格式,使得数据流 1)在输入端和输出端切换不同的输入/输出格式 2)在不同的Operator上使用不同的数据格式。 hive 的 UDAF 中只要会使用即可。
3. Deep
3.1 两个核心类
-
AbstractGenericUDAFResolver
通过 getEvaluator 返回自定义的Evaluator -
GenericUDAFEvaluator
通过7个函数,4个步骤完成UDAF全部逻辑
3.2 GenericUDAFEvaluator
7个函数:
- init()
初始化输入和输出的数据结构 - getNewAggregationBuffer()
返回用于存储中间聚合结果的对象 - reset()
重置聚合结果 - iterate()
将一行数据放入聚合buffer中 - terminatePartial()
返回部分聚合结果 - merge()
合并terminatePartial返回的部分聚合结果 - terminate()
返回最终结果
4个步骤:
- partial1
input -> output:original -> partial aggregation
method invoke:init() -> iterate() -> terminatePartial()
- partial2
input -> output:partial aggregation -> partial aggregation
method invoke:init() -> merge() -> terminatePartial()
- final
input -> output:partial aggregation -> full aggregation
method invoke:init() -> merge() -> terminate()
- complete
input -> output:original -> full aggregation
method invoke:init() -> iterate() -> terminate()
4. Best Practice
4.1 需求:
input:
a1:5 c1:10
a2:3 c2:40
a3:8 c3:100
output:
(a1 * c1 + a2 * c2 + a3 * c3) / (c1 + c2 + c3) 类似于加权平均数
4.2 代码:
public class WeightedAverage extends AbstractGenericUDAFResolver {
@Override
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters)
throws SemanticException {
if (parameters.length != 2) {
throw new UDFArgumentTypeException(parameters.length - 1,
"Exactly two argument is expected.");
}
if (parameters[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentTypeException(0,
"Only primitive type arguments are accepted but "
+ parameters[0].getTypeName() + " is passed.");
}
switch (((PrimitiveTypeInfo) parameters[0]).getPrimitiveCategory()) {
case INT:
case LONG:
return new GenericUDAFAverageEvaluator();
case BYTE:
case SHORT:
case FLOAT:
case DOUBLE:
case STRING:
case TIMESTAMP:
case BOOLEAN:
default:
throw new UDFArgumentTypeException(0,
"Only int or long type arguments are accepted but "
+ parameters[0].getTypeName() + " is passed.");
}
}
public static class GenericUDAFAverageEvaluator extends GenericUDAFEvaluator {
// input For iterate()
PrimitiveObjectInspector avgOriginalInputOI;
PrimitiveObjectInspector weightOriginalInputOI;
// output For terminatePartial()
Object[] partialAggregationResult;
// input For merge()
StructObjectInspector soi;
StructField countField;
StructField sumField;
LongObjectInspector countFieldOI;
LongObjectInspector sumFieldOI;
// output For terminate()
LongWritable fullAggregationResult;
@Override
public ObjectInspector init(Mode mode, ObjectInspector[] parameters)
throws HiveException {
super.init(mode, parameters);
// init input
// Mode.PARTIAL1 || mode == Mode.COMPLETE
// input:original, method:iterate()
if (mode == Mode.PARTIAL1 || mode == Mode.COMPLETE) {
avgOriginalInputOI = (PrimitiveObjectInspector) parameters[0];
weightOriginalInputOI = (PrimitiveObjectInspector) parameters[1];
}
// Mode.PARTIAL2 || Mode.FINAL
// input:partial aggregation, method:merge()
else {
//部分数据作为输入参数时,用到的struct的OI实例,指定输入数据类型,用于解析数据
soi = (StructObjectInspector) parameters[0];
countField = soi.getStructFieldRef("count");
sumField = soi.getStructFieldRef("sum");
//数组中的每个数据,需要其各自的基本类型OI实例解析
countFieldOI = (LongObjectInspector) countField.getFieldObjectInspector();
sumFieldOI = (LongObjectInspector) sumField.getFieldObjectInspector();
}
// init output
// Mode.PARTIAL1 || mode == Mode.PARTIAL2
// output:partial aggregation, method:terminatePartial()
if (mode == Mode.PARTIAL1 || mode == Mode.PARTIAL2) {
partialAggregationResult = new Object[2];
partialAggregationResult[0] = new LongWritable(0);
partialAggregationResult[1] = new LongWritable(0);
/*
* 构造Struct的OI实例,用于设定聚合结果数组的类型
* 需要字段名List和字段类型List作为参数来构造
*/
ArrayList<String> fname = new ArrayList<String>();
fname.add("count");
fname.add("sum");
ArrayList<ObjectInspector> foi = new ArrayList<ObjectInspector>();
//注:此处的两个OI类型 描述的是 partialResult[] 的两个类型,故需一致
foi.add(PrimitiveObjectInspectorFactory.writableLongObjectInspector);
foi.add(PrimitiveObjectInspectorFactory.writableLongObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fname, foi);
}
// Mode.COMPLETE || Mode. FINAL
// output:full aggregation, method:terminate()
else {
//FINAL COMPLETE 最终聚合结果为一个数值,并用基本类型OI设定其类型
fullAggregationResult = new LongWritable(0);
return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
}
}
/*
* 聚合数据缓存存储结构
*/
static class AverageAgg implements AggregationBuffer {
long count;
long sum;
}
@Override
public AggregationBuffer getNewAggregationBuffer() throws HiveException {
AverageAgg result = new AverageAgg();
reset(result);
return result;
}
@Override
public void reset(AggregationBuffer agg) throws HiveException {
AverageAgg myagg = (AverageAgg) agg;
myagg.count = 0;
myagg.sum = 0;
}
/*
* 遍历原始数据(将一行数据(Object[] parameters)放入聚合buffer中)
* input: original
*/
@Override
public void iterate(AggregationBuffer agg, Object[] parameters)
throws HiveException {
Object p1 = parameters[0];
Object p2 = parameters[1];
if (p1 != null && p2 != null) {
AverageAgg myagg = (AverageAgg) agg;
try {
long avg = PrimitiveObjectInspectorUtils.getLong(p1, avgOriginalInputOI);
long count = PrimitiveObjectInspectorUtils.getLong(p2, weightOriginalInputOI);
myagg.count += count;
myagg.sum += avg*count;
} catch (NumberFormatException e) {
throw new HiveException("NumberFormatException: get value failed");
}
}
}
/*
* 得出部分聚合结果
* output: partial aggregation
*/
@Override
public Object terminatePartial(AggregationBuffer agg) throws HiveException {
AverageAgg myagg = (AverageAgg) agg;
((LongWritable) partialAggregationResult[0]).set(myagg.count);
((LongWritable) partialAggregationResult[1]).set(myagg.sum);
return partialAggregationResult;
}
/*
* 合并部分聚合结果(注:Object[] 是 Object 的子类,此处 partial 为 Object[]数组)
* input: partial aggregation
*/
@Override
public void merge(AggregationBuffer agg, Object partial)
throws HiveException {
if (partial != null) {
AverageAgg myagg = (AverageAgg) agg;
//通过StandardStructObjectInspector实例,分解出 partial 数组元素值
Object partialCount = soi.getStructFieldData(partial, countField);
Object partialSum = soi.getStructFieldData(partial, sumField);
//通过基本数据类型的OI实例解析Object的值
myagg.count += countFieldOI.get(partialCount);
myagg.sum += sumFieldOI.get(partialSum);
}
}
/*
* 得出最终聚合结果
* output: full aggregation
*/
@Override
public Object terminate(AggregationBuffer agg) throws HiveException {
AverageAgg myagg = (AverageAgg) agg;
if (myagg.count == 0) {
return null;
} else {
fullAggregationResult.set(myagg.sum / myagg.count);
return fullAggregationResult;
}
}
}
}
5. Ref
- 《Hive 编程指南》
- Hive之自定义聚合函数UDAF
网友评论