美文网首页
数据结构 —— 图

数据结构 —— 图

作者: E术家 | 来源:发表于2020-04-30 17:14 被阅读0次

概念

线性表的特性:明显的层次关系,1对多的关系
图的特性:节点的关系任意
图的数据结构

图是由顶点的有穷非空集合 和 顶点之间边的集合组成。通常表示为G(V,E)。V是图G中的顶点集合,E是图G中边的集合。

图 没有空图 任意点都能是起点

无向图&无向边
无向完全图

无向图之间没有方向


有向图&有向边
有向完全图

有向图之间存在方向

图的应用 —— 图的存储

邻接矩阵

用顺序存储的方案把图存起来


无向示意图
有向示意图

二位数组代码表示_基础设置+结构体

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXVEX 100 /* 最大顶点数,应由用户定义 */
#define INFINITYC 0

typedef int Status;    /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef char VertexType; /* 顶点类型应由用户定义  */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
typedef struct
{
    VertexType vexs[MAXVEX]; /* 顶点表 */
    EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
    int numNodes, numEdges; /* 图中当前的顶点数和边数  */
}MGraph;

创建

void CreateMGraph(MGraph *G){
    
    int i,j,k,w;
    printf("输入顶点数和边数:\n");
    //1. 输入顶点数/边数
    scanf("%d,%d",&G->numNodes,&G->numEdges);
    printf("顶点数:%d,边数:%d\n",G->numNodes,G->numEdges);
    
    //2.输入顶点信息/顶点表
    for(i = 0; i<= G->numNodes;i++)
        scanf("%c",&G->vexs[i]);
    
    //3.初始化邻接矩阵
    for(i = 0; i < G->numNodes;i++)
         for(j = 0; j < G->numNodes;j++)
             G->arc[i][j] = INFINITYC;
    
    //4.输入边表信息
    for(k = 0; k < G->numEdges;k++){
        printf("输入边(vi,vj)上的下标i,下标j,权w\n");
        scanf("%d,%d,%d",&i,&j,&w);
        
        G->arc[i][j] = w;
        //如果无向图,矩阵对称;
        G->arc[j][i] = G->arc[i][j];
        
    }
    /*5.打印邻接矩阵*/
    for (int i = 0; i < G->numNodes; i++) {
        printf("\n");
        for (int j = 0; j < G->numNodes; j++) {
            printf("%d ",G->arc[i][j]);
        }
    }
    printf("\n");
}

链式表形式代码表示_基础设置+结构体

#define M 100
#define true 1
#define false 0

typedef char Element;
typedef int BOOL;
//邻接表的节点
typedef struct Node{
    int adj_vex_index;  //弧头的下标,也就是被指向的下标
    Element data;       //权重值
    struct Node * next; //边指针
}EdgeNode;

//顶点节点表
typedef struct vNode{
    Element data;          //顶点的权值
    EdgeNode * firstedge;  //顶点下一个是谁?
}VertexNode, Adjlist[M];

//总图的一些信息
typedef struct Graph{
    Adjlist adjlist;       //顶点表
    int arc_num;           //边的个数
    int node_num;          //节点个数
    BOOL is_directed;      //是不是有向图
}Graph, *GraphLink;

创建

void creatGraph(GraphLink *g){
    int i,j,k;
    EdgeNode *p;
    
    //1. 顶点,边,是否有向
    printf("输入顶点数目,边数和有向?:\n");
    scanf("%d %d %d", &(*g)->node_num, &(*g)->arc_num, &(*g)->is_directed);
    
    //2.顶点表
     printf("输入顶点信息:\n");
    for (i = 0; i < (*g)->node_num; i++) {
        getchar();
        scanf("%c", &(*g)->adjlist[i].data);
        (*g)->adjlist[i].firstedge = NULL;
    }
    
    //3.
    printf("输入边信息:\n");
    for (k = 0; k < (*g)->arc_num; k++){
        getchar();
        scanf("%d %d", &i, &j);
        
        //①新建一个节点
        p = (EdgeNode *)malloc(sizeof(EdgeNode));
        //②弧头的下标
        p->adj_vex_index = j;
        //③头插法插进去,插的时候要找到弧尾,那就是顶点数组的下标i
        p->next = (*g)->adjlist[i].firstedge;
        //④将顶点数组[i].firstedge 设置为p
        (*g)->adjlist[i].firstedge = p;
        
        //j->i
        if(!(*g)->is_directed) {
            // j -----> i
            //①新建一个节点
            p = (EdgeNode *)malloc(sizeof(EdgeNode));
            //②弧头的下标i
            p->adj_vex_index = i;
            //③头插法插进去,插的时候要找到弧尾,那就是顶点数组的下标i
            p->next = (*g)->adjlist[j].firstedge;
            //④将顶点数组[i].firstedge 设置为p
            (*g)->adjlist[j].firstedge = p;
        }
    }
}

遍历输出

void putGraph(GraphLink g){
    int i;
    printf("邻接表中存储信息:\n");
    //遍历一遍顶点坐标,每个再进去走一次
    for (i = 0; i < g->node_num; i++) {
        EdgeNode * p = g->adjlist[i].firstedge;
        while (p) {
            printf("%c->%c ", g->adjlist[i].data, g->adjlist[p->adj_vex_index].data);
            p = p->next;
        }
        printf("\n");
    }
}

main函数执行

int main(int argc, const char * argv[]) {
    // insert code here...
    printf("邻接表实现图的存储\n");
    /*
     邻接表实现图的存储
     输入顶点数目,边数和有向?:
     4 5 0
     输入顶点信息:
     0 1 2 3
     输入边信息:
     0 1 0 2 0 3 2 1 2 3
     邻接表中存储信息:
     0->3 0->2 0->1
     1->2 1->0
     2->3 2->1 2->0
     3->2 3->0
    */
    /*
     邻接表实现图的存储
     输入顶点数目,边数和有向?:
     4 5 1
     输入顶点信息:
     0 1 2 3
     输入边信息:
     1 0 1 2 2 1 2 0 0 3
     邻接表中存储信息:
     0->3
     1->2 1->0
     2->0 2->1
     */
    GraphLink g = (Graph *)malloc(sizeof(Graph));
    creatGraph(&g);
    putGraph(g);
    return 0;
}

相关文章

  • 图表的数据返回格式

    柱状图、折线图、雷达图的数据结构 饼状图、圆环图、漏斗图、仪表盘的数据结构 地图的数据结构 散点图的数据结构 sc...

  • 14-图和图的存储

    图 如何理解图?前面我们学习了线性表,链表,树等基础数据结构,图这种数据结构就是它们的综合利用。我们都知道,图有边...

  • HashMap源码分析

    HashMap数据结构 HashMap数据结构.png HashMap继承图 HashMap-class.jpg ...

  • 有向无环图的数据结构和拓扑排序

    有向无环图的拓扑排序,首先定义有向图的存储数据结构,邻接链表Bag,实现Iterable接口。 定义有向图的数据结构:

  • OVS 源码分析整理

    OVS 核心代码 OVS 架构 OVS 主要的数据结构数据结构关系图主要的数据结构和数据结构的参数数据结构代码 d...

  • 数据结构之图

    数据结构之图 1. 简介 图结构也是一种非线性数据结构。生活中有很多图结构的例子,比如通信网络、交通网络、人际关系...

  • TensorFlow2简单入门-张量数据结构(Tensor)

    程序 = 数据结构+算法 TensorFlow程序 = 张量数据结构 + 计算图算法语言 TensorFlow中的...

  • 数据结构与算法基础

    思维导图 一、数据结构 1、数据结构基础 1.1、什么是数据结构? 数据结构:是相互之间存在一种或多种特定关系的数...

  • LeetCode刷题计划

    几个重要问题类型 排序 查找 字符串处理 图问题 组合问题 几何问题 数值问题 几种基本数据结构 线性数据结构 图...

  • Java核心类库—— 数据结构

    Java核心类库-------数据结构体系图 1.数据结构 2.栈 3.哈希表

网友评论

      本文标题:数据结构 —— 图

      本文链接:https://www.haomeiwen.com/subject/rhftghtx.html