美文网首页
Pandas的IO操作

Pandas的IO操作

作者: Chaweys | 来源:发表于2020-11-16 09:38 被阅读0次

#coding=utf-8
import pandas as pd

#read_csv可读取csv和txt文件
df1=pd.read_csv('df.csv')
print(df1)
'''
    name  age    sex
0  lemon   20   male
1   jack   22   male
2   json   23  fmale
'''

df2=pd.read_csv('df.txt')
print(df2)
'''
    name  age    sex
0  lemon   20   male
1   jack   22   male
2   json   23  fmale
'''


#read_excel可读取excel文件
df3=pd.read_excel('df.xlsx')
print(df3)
'''
    name  age    sex
0  lemon   20   male
1   jack   22   male
2   json   23  fmale
'''



#输出数据:to_excel()写入到excel文件
dicts={"name":["lemon","jack","jason"],
       "age":[20,15,30],
       "sex":["male","male","fmale"]
       }
df=pd.DataFrame(dicts)
df.to_excel('df4.xlsx',header=False,index=False)
'''
生成df4.xlsx文件,没有行索引和列索引
20  lemon   male
15  jack    male
30  jason   fmale
'''
df.to_excel('df4.xlsx',header=True,index=True)
'''
生成df4.xlsx文件,行索引和列索引都输出
    age name    sex
0   20  lemon   male
1   15  jack    male
2   30  jason   fmale

【注】:输出excel文件时,该excel文件必须关闭,否则无法写入
'''

#输出数据:to_csv()写入到csv文件
df.to_csv('df4.csv')
'''
默认都写入行索引和列索引
,age,name,sex
0,20,lemon,male
1,15,jack,male
2,30,jason,fmale
'''

#输出成字典
print(df.to_dict())
'''
{'age': {0: 20, 1: 15, 2: 30}, 'name': {0: 'lemon', 1: 'jack', 2: 'jason'}, 'sex': {0: 'male', 1: 'male', 2: 'fmale'}}
'''

#输出数据:to_html()写入到html文件
df.to_html('df4.html')
'''
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>age</th>
      <th>name</th>
      <th>sex</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>20</td>
      <td>lemon</td>
      <td>male</td>
    </tr>
    <tr>
      <th>1</th>
      <td>15</td>
      <td>jack</td>
      <td>male</td>
    </tr>
    <tr>
      <th>2</th>
      <td>30</td>
      <td>jason</td>
      <td>fmale</td>
    </tr>
  </tbody>
</table>
'''

相关文章

网友评论

      本文标题:Pandas的IO操作

      本文链接:https://www.haomeiwen.com/subject/rhinbktx.html