美文网首页
Sqoop的安装与数据的导入导出

Sqoop的安装与数据的导入导出

作者: 数据萌新 | 来源:发表于2018-09-26 17:08 被阅读0次

    Sqoop介绍
    Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。其机制是将导入或导出命令翻译成mapreduce程序来实现
    在翻译出的mapreduce中主要是对inputformat和outputformat进行定制

    image.png

    Sqoop的安装
    1、将Sqoop包上传到hadoop集群,我这里用的是sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz。解压后改下名字sqoop

    [root@mini1 ~]#tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz
    [root@mini1 ~]# mv sqoop-1.4.6xxxx(解压后的包名)sqoop 
    

    2、修改配置文件
    进入conf目录修改sqoop-env-template.sh名字为sqoop-env.sh
    并修改该文件内容,三个地方,一个hadoop命令所在位置,一个mapreduce所在位置,一个hive命令所在位置(怎么查看命令位置可以使用which,比如which hive,但是这里可以指定一个父目录)。

    [root@mini1 ~]# cd sqoop
    [root@mini1 sqoop]#cd conf/
    [root@mini1 conf]# ll
    总用量 28
    -rw-rw-r--. 1 root root 3895 4月  27 2015 oraoop-site-template.xml
    -rw-rw-r--. 1 root root 1404 4月  27 2015 sqoop-env-template.cmd
    -rwxr-xr-x. 1 root root 1345 4月  27 2015 sqoop-env-template.sh
    -rw-rw-r--. 1 root root 5531 4月  27 2015 sqoop-site-template.xml
    -rw-rw-r--. 1 root root 5531 4月  27 2015 sqoop-site.xml
    [root@mini1 conf]# mv sqoop-env-template.sh sqoop-env.sh
    [root@mini1 conf]#vi sqoop-env.sh
    ...
    #Set path to where bin/hadoop is available
    export HADOOP_COMMON_HOME=/root/apps/hadoop-2.6.4/
    
    #Set path to where hadoop-*-core.jar is available
    export HADOOP_MAPRED_HOME=/root/apps/hadoop-2.6.4/
    
    #Set the path to where bin/hive is available
    export HIVE_HOME=/root/apps/hive/
    ...
    

    3、加入mysql的驱动包
    由于装hive的时候就将mysql驱动包传到了hive的lib目录下,这里直接拷贝过来即可

    [root@mini1 conf]#cd ..
    [root@mini1 sqoop]# cp /root/apps/hive/lib/mysql-connector-java-5.1.28.jar ./lib/
    

    到这就安装完成了。

    可能的问题

    mysql-connector-java-5.1.28.jar
    这个jar包的版本必须在28之上,否则可能会有问题。

    数据导入
    1、导入数据库表数据导入到hdfs
    mysql创建表,插入数据,为了使用方便复制了如下

    mysql> use test
    Reading table information for completion of table and column names
    You can turn off this feature to get a quicker startup with -A
    
    Database changed
    mysql>CREATE TABLE `emp` (
      `id` int(32) NOT NULL AUTO_INCREMENT,
      `name` varchar(255) NOT NULL,
      `deg` varchar(255) NOT NULL,
      `salary` int(11) NOT NULL,
      `dept` varchar(32) NOT NULL,
      PRIMARY KEY (`id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
    Query OK, 0 rows affected (0.03 sec)
    
    mysql> show tables;
    +----------------+
    | Tables_in_test |
    +----------------+
    | emp            |
    | t_user         |
    +----------------+
    2 rows in set (0.01 sec)
    
    mysql> desc emp;
    +--------+--------------+------+-----+---------+----------------+
    | Field  | Type         | Null | Key | Default | Extra          |
    +--------+--------------+------+-----+---------+----------------+
    | id     | int(32)      | NO   | PRI | NULL    | auto_increment |
    | name   | varchar(255) | NO   |     | NULL    |                |
    | deg    | varchar(255) | NO   |     | NULL    |                |
    | salary | int(11)      | NO   |     | NULL    |                |
    | dept   | varchar(32)  | NO   |     | NULL    |                |
    +--------+--------------+------+-----+---------+----------------+
    5 rows in set (0.02 sec)
    
    mysql> INSERT INTO `test`.`emp` (`id`, `name`, `deg`, `salary`, `dept`) VALUES ('1', 'zhangsan', 'manager', '30000', 'AA');
    Query OK, 1 row affected (0.02 sec)
    
    mysql> INSERT INTO `test`.`emp` (`id`, `name`, `deg`, `salary`, `dept`) VALUES ('2', 'lisi', 'programmer', '20000', 'AA');
    Query OK, 1 row affected (0.01 sec)
    
    mysql> INSERT INTO `test`.`emp` (`id`, `name`, `deg`, `salary`, `dept`) VALUES ('2', 'wangwu', 'programmer', '15000', 'BB');
    ERROR 1062 (23000): Duplicate entry '2' for key 'PRIMARY'
    mysql> INSERT INTO `test`.`emp` (`id`, `name`, `deg`, `salary`, `dept`) VALUES ('3', 'wangwu', 'programmer', '15000', 'BB');
    Query OK, 1 row affected (0.00 sec)
    
    mysql> INSERT INTO `test`.`emp` (`id`, `name`, `deg`, `salary`, `dept`) VALUES ('4', 'hund', 'programmer', '5000', 'CC');
    Query OK, 1 row affected (0.01 sec)
    
    mysql> select * from emp;
    +----+----------+------------+--------+------+
    | id | name     | deg        | salary | dept |
    +----+----------+------------+--------+------+
    |  1 | zhangsan | manager    |  30000 | AA   |
    |  2 | lisi     | programmer |  20000 | AA   |
    |  3 | wangwu   | programmer |  15000 | BB   |
    |  4 | hund     | programmer |   5000 | CC   |
    +----+----------+------------+--------+------+
    
    

    使用下面的命令将test数据库中的emp表导入到hdfs(有默认目录)

    bin/sqoop import   \
    --connect jdbc:mysql://192.168.25.127:3306/test   \
    --username root  \
    --password 123456   \
    --table emp   \
    --m 1 
    

    数据库ip,使用的数据库
    mysql用户名
    mysql密码
    要导入的表
    注:m 1 表示使用一个mapreduce
    程序在执行的时候能看到是跑了mapreduce程序的。
    执行完毕后页面进行查看(/user/root是默认默认目录,我用的是root用户)


    image.png

    查看文件内容(数据间逗号隔开的)

    [root@mini1 sqoop]# hadoop fs -ls /user/root/emp
    Found 2 items
    -rw-r--r--   2 root supergroup          0 2017-10-26 09:49 /user/root/emp/_SUCCESS
    -rw-r--r--   2 root supergroup        110 2017-10-26 09:49 /user/root/emp/part-m-00000
    [root@mini1 sqoop]# hadoop fs -cat  /user/root/emp/part-m-00000
    1,zhangsan,manager,30000,AA
    2,lisi,programmer,20000,AA
    3,wangwu,programmer,15000,BB
    4,hund,programmer,5000,CC
    
    

    注:执行导入的时候很大可能出现下面的异常

    java.sql.SQLException: Access denied for user 'root'@'mini1' (using password: YES)
            at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1086)
         ...
            at org.apache.sqoop.Sqoop.runTool(Sqoop.java:227)
            at org.apache.sqoop.Sqoop.main(Sqoop.java:236)
    17/10/26 00:01:46 ERROR tool.ImportTool: Encountered IOException running import job: java.io.IOException: No columns to generate for ClassWriter
    

    这基本就是没授权导致的,给mini1授权即可如下

    mysql> grant all privileges on *.* to root@mini1 identified by "123456";
    Query OK, 0 rows affected (0.01 sec)
    
    mysql> FLUSH PRIVILEGES;
    Query OK, 0 rows affected (0.00 sec)
    mysql> show grants for root@mini1;
    +------------------------------------------------------------------------------------------------------------------------------------+
    | Grants for root@mini1                                                                                                              |
    +------------------------------------------------------------------------------------------------------------------------------------+
    | GRANT ALL PRIVILEGES ON *.* TO 'root'@'mini1' IDENTIFIED BY PASSWORD '*6BB4837EB74329105EE4568DDA7DC67ED2CA2AD9' WITH GRANT OPTION |
    | GRANT PROXY ON ''@'' TO 'root'@'mini1' WITH GRANT OPTION                                                                           |
    +------------------------------------------------------------------------------------------------------------------------------------+
    

    2、emp表数据导入到hive表中
    其实是先导入到hdfs,再由hdfs导入到hive(属于剪切粘贴)

    先将前面生成的目录删了

    [root@mini2 ~]# hadoop fs -rm -r  /user/root
    

    执行以下命令导入emp表数据到hive表(表名也是emp)

    [root@mini1 sqoop]# bin/sqoop import   \
    > --connect jdbc:mysql://192.168.25.127:3306/test   \
    > --username root  \
    > --password 123456   \
    > --table emp   \
    > --hive-import \
    > --m 1
    ...
    17/10/26 10:04:13 INFO mapreduce.Job: Job job_1508930025306_0022 running in uber mode : false
    17/10/26 10:04:13 INFO mapreduce.Job:  map 0% reduce 0%
    17/10/26 10:04:17 INFO mapreduce.Job:  map 100% reduce 0%
    17/10/26 10:04:18 INFO mapreduce.Job: Job job_1508930025306_0022 completed successfully
    17/10/26 10:04:19 INFO mapreduce.Job: Counters: 30
            File System Counters
                    FILE: Number of bytes read=0
                    FILE: Number of bytes written=124217
                    FILE: Number of read operations=0
                    FILE: Number of large read operations=0
                    FILE: Number of write operations=0
                    HDFS: Number of bytes read=87
                    HDFS: Number of bytes written=110
                    HDFS: Number of read operations=4
                    HDFS: Number of large read operations=0
                    HDFS: Number of write operations=2
            Job Counters 
                    Launched map tasks=1
                    Other local map tasks=1
                    Total time spent by all maps in occupied slots (ms)=2926
                    Total time spent by all reduces in occupied slots (ms)=0
                    Total time spent by all map tasks (ms)=2926
                    Total vcore-milliseconds taken by all map tasks=2926
                    Total megabyte-milliseconds taken by all map tasks=2996224
    ...
    17/10/26 10:04:21 INFO hive.HiveImport: It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'.
    17/10/26 10:04:27 INFO hive.HiveImport: OK
    17/10/26 10:04:27 INFO hive.HiveImport: Time taken: 1.649 seconds
    17/10/26 10:04:27 INFO hive.HiveImport: Loading data to table default.emp
    17/10/26 10:04:28 INFO hive.HiveImport: Table default.emp stats: [numFiles=1, totalSize=110]
    17/10/26 10:04:28 INFO hive.HiveImport: OK
    17/10/26 10:04:28 INFO hive.HiveImport: Time taken: 0.503 seconds
    17/10/26 10:04:28 INFO hive.HiveImport: Hive import complete.
    17/10/26 10:04:28 INFO hive.HiveImport: Export directory is contains the _SUCCESS file only, removing the directory.
    

    将重要的输出信息都粘贴了下来,可见是先导入到hdfs的文件中,再移动到hive中的。
    去hive中查看是否创建了该表导入了数据

    hive> select * from emp;
    OK
    1       zhangsan        manager 30000   AA
    2       lisi    programmer      20000   AA
    3       wangwu  programmer      15000   BB
    4       hund    programmer      5000    CC
    Time taken: 0.641 seconds, Fetched: 4 row(s)
    

    3、导入数据到hdfs指定目录
    跟导入数据到hdfs查了句指定目录

    [root@mini1 sqoop]# bin/sqoop import   \
    > --connect jdbc:mysql://192.168.25.127:3306/test   \
    > --username root  \
    > --password 123456   \
    > --table emp   \
    > --target-dir /queryresult \
    > --m 1
    

    执行后查看

    [root@mini3 ~]# hadoop fs -ls /queryresult 
    Found 2 items
    -rw-r--r--   2 root supergroup          0 2017-10-26 10:14 /queryresult/_SUCCESS
    -rw-r--r--   2 root supergroup        110 2017-10-26 10:14 /queryresult/part-m-00000
    [root@mini3 ~]# hadoop fs -cat /queryresult/part-m-00000
    1,zhangsan,manager,30000,AA
    2,lisi,programmer,20000,AA
    3,wangwu,programmer,15000,BB
    4,hund,programmer,5000,CC
    

    4、导入表数据子集
    有时候不是整张表都要导入,那么可以按照需要来进行导入。
    比如只导入id,name,salary三个字段,且要求deg=programmer

    如下

    bin/sqoop import \
    --connect jdbc:mysql://192.168.25.127:3306/test  \
    --username root \
    --password 123456 \
    --target-dir /wherequery2 \
    --query 'select id,name,deg from emp WHERE  deg = "programmer" and $CONDITIONS' \
    --split-by id \
    --fields-terminated-by '\t' \
    --m 1
    

    split-by id表示按照id切片,fields-terminated-by ‘\t’表示导入到文件系统中的数据分隔符为”\t”,默认是”,”

    [root@mini3 ~]# hadoop fs -ls /wherequery2
    Found 2 items
    -rw-r--r--   2 root supergroup          0 2017-10-26 10:21 /wherequery2/_SUCCESS
    -rw-r--r--   2 root supergroup         56 2017-10-26 10:21 /wherequery2/part-m-00000
    [root@mini3 ~]# hadoop fs -cat /wherequery2/part-m-00000
    2       lisi    programmer
    3       wangwu  programmer
    4       hund    programmer
    
    

    --split-by原理

    1)--split-by的原理
    设置并行--num-mappers=4,加--split-by的情况会根据主键先查最大值和最小值,即:select min(key_id),max(key_id) from tb_oracle_stock_info_key。

    如tb_oracle_stock_info_key(股票信息表)中 key_id(主键)最小值为300,最大值为400,那么4个并行度的切片情况如下:

    并行度实现的sql如下:

    select * from tb_oracle_stock_info_key where key_id between 300 and 325;
    
    select * from tb_oracle_stock_info_key where key_id between 325 and 350;
    
    select * from tb_oracle_stock_info_key where key_id between 351 and 375;
    
    select * from tb_oracle_stock_info_key where key_id between 376 and 400;
    

    综上所述,加--split-by参数后,使用大于1个并行时,效果理论上优于没有加--split-by参数作业。

    2)数据倾斜

    假设oracle的表tb_oracle_stock_info_key(股票信息表)主键为key_id,sqoop根据max(key_id)来平均分配4份。假设min(key_id)=1,max(key_id)=400,那么导数的时候会按400切割生4份,即 :

    select * from tb_oracle_stock_info_key where key_id between 1  and 100;
    
    select * from tb_oracle_stock_info_key where key_id between 101 and 200;
    
    select * from tb_oracle_stock_info_key where key_id between 201 and 300;
    
    select * from tb_oracle_stock_info_key where key_id between 301 and 400;
    
    

    但是由于数据特殊的原因,key_id=[1,100]分区内自由1条数据,key_id=[101,300]内完全没有数据,99%数据都是key_id=[301,400],这样就会产生数据倾斜,也就是4个并行中,有3个不耗费时间,有1个花了大部分时间,这样的并行效果相当的不好:

    因此,在使用并行度的时候需要了解主键的分布情况是是否有必要的。

    5、增量导入
    增量导入这里是仅导入新增加的表中的行,比如emp表有4条记录,但是我们新表中只需要导入id为3和4的记录进去
    使用以下命令

    bin/sqoop import \
    --connect jdbc:mysql://192.168.25.127:3306/test \
    --username root \
    --password 123456 \
    --table emp --m 1 \
    --incremental append \
    --check-column id \ 
    --last-value 2
    
    [root@mini1 sqoop]# bin/sqoop import \
    > --connect jdbc:mysql://192.168.25.127:3306/test \
    > --username root \
    > --password 123456 \
    > --table emp --m 1 \
    > --incremental append \
    > --check-column id \
    > --last-value 2
    [root@mini1 sqoop]# hadoop fs -ls /user/root/emp
    Found 1 items
    -rw-r--r--   2 root supergroup         55 2017-10-26 10:28 /user/root/emp/part-m-00000
    [root@mini1 sqoop]# hadoop fs -cat /user/root/emp/part-m-00000
    3,wangwu,programmer,15000,BB
    4,hund,programmer,5000,CC
    

    数据导出
    将hdfs上数据导入到mysql数据库表中
    注:需要将mysql上数据库和表创建出来才能导出
    继续使用上面的emp表,但是将数据清空

    mysql> select * from emp;
    +----+----------+------------+--------+------+
    | id | name     | deg        | salary | dept |
    +----+----------+------------+--------+------+
    |  1 | zhangsan | manager    |  30000 | AA   |
    |  2 | lisi     | programmer |  20000 | AA   |
    |  3 | wangwu   | programmer |  15000 | BB   |
    |  4 | hund     | programmer |   5000 | CC   |
    +----+----------+------------+--------+------+
    4 rows in set (0.00 sec)
    
    mysql> truncate emp;
    Query OK, 0 rows affected (0.05 sec)
    
    mysql> select * from emp;
    Empty set (0.00 sec)
    
    

    使用以下命令,将数据从hdfs上指定目录数据导出到mysql指定的数据库和表上

    bin/sqoop export \
    --connect jdbc:mysql://192.168.25.127:3306/test \
    --username root \
    --password 123456 \
    --table emp \
    --export-dir /user/root/emp/
    

    执行完之后查看表emp数据

    mysql> select * from emp;
    +----+--------+------------+--------+------+
    | id | name   | deg        | salary | dept |
    +----+--------+------------+--------+------+
    |  3 | wangwu | programmer |  15000 | BB   |
    |  4 | hund   | programmer |   5000 | CC   |
    +----+--------+------------+--------+------+
    2 rows in set (0.00 sec)
    
    

    导出完成

    相关文章

      网友评论

          本文标题:Sqoop的安装与数据的导入导出

          本文链接:https://www.haomeiwen.com/subject/riljoftx.html