美文网首页
JDK源码 -- HashMap

JDK源码 -- HashMap

作者: TomyZhang | 来源:发表于2019-07-30 20:39 被阅读0次

    一、概念

    类定义:

    public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable
    
    • 继承了AbstractMap抽象类,实现了Map接口,拥有一组Map通用的操作。
    • 实现了Cloneable接口,可进行浅层次拷贝。
    • 实现了Serializable接口,可进行序列化。

    特点:

    • 允许键及值为空对象。
    • 非线程安全类,可通过Collections.synchronizedMap(new HashMap())获得线程安全的HashMap。
    • 不保证插入顺序,也不保证顺序不随时间变化。

    二、使用

    //TestHashMap
    public class TestHashMap {
        private static final String TAG = "TestHashMap";
        private Map<String, Integer> map = new HashMap<>();
    
        public void testPut() {
            map.put("Android", 1);
            map.put(null, null);
            map.put("网络协议", 3);
            map.put("数据结构与算法", 4);
            Log.d(TAG, "zwm, put map: " + map);
            Log.d(TAG, "zwm, get key: null, value: " + map.get(null));
        }
    
        public void testPutAll() {
            Map<String, Integer> tempMap = new HashMap<>();
            tempMap.put("Android", 100);
            tempMap.put("Java", 200);
            tempMap.put("网络协议", 300);
            tempMap.put("数据结构与算法", 400);
            map.putAll(tempMap);
            Log.d(TAG, "zwm, putAll map: " + map);
        }
    
        public void testGet() {
            String key = "数据结构与算法";
            int value = map.get(key);
            Log.d(TAG, "zwm, get key: " + key + ", value: " + value);
        }
    
        public void testRemove() {
            String key = "网络协议";
            int value = map.remove(key);
            Log.d(TAG, "zwm, remove key: " + key + ", value: " + value);
        }
    
        public void testContains() {
            String key = "Android";
            boolean result = map.containsKey(key);
            Log.d(TAG, "zwm, containsKey: " + key + ", result: " + result);
    
            Integer value = 200;
            result = map.containsValue(value);
            Log.d(TAG, "zwm, containsValue: " + value + ", result: " + result);
        }
    
        public void testKeySet() {
            Set<String> keySet = map.keySet();
            Log.d(TAG, "zwm, keySet: " + keySet);
        }
    
        public void testValues() {
            Collection<Integer> values = map.values();
            Log.d(TAG, "zwm, values: " + values);
        }
    
        public void testEntrySet() {
            Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
            for(Map.Entry<String, Integer> entry : entrySet) {
                Log.d(TAG, "zwm, for entry, key: " + entry.getKey() + ", value: " + entry.getValue());
            }
    
            Iterator iterator = entrySet.iterator();
            while (iterator.hasNext()) {
                Map.Entry entry = (Map.Entry)iterator.next();
                Log.d(TAG, "zwm, iterator entry, key: " + entry.getKey() + ", value: " + entry.getValue());
            }
        }
    
        public void testClear() {
            map.clear();
            Log.d(TAG, "zwm, clear map: " + map);
        }
    
        public void testSize() {
            Log.d(TAG, "zwm, size: " + map.size());
        }
    
        public void testEmpty() {
            Log.d(TAG, "zwm, isEmpty: " + map.isEmpty());
        }
    }
    
    //测试代码
    private void testMethod() {
        Log.d(TAG, "zwm, testMethod");
        TestHashMap testHashMap = new TestHashMap();
        testHashMap.testPut();
        testHashMap.testPutAll();
        testHashMap.testGet();
        testHashMap.testRemove();
        testHashMap.testContains();
        testHashMap.testKeySet();
        testHashMap.testValues();
        testHashMap.testEntrySet();
        testHashMap.testSize();
        testHashMap.testClear();
        testHashMap.testEmpty();
    }
    
    //输出log
    2019-07-30 11:27:28.646 zwm, testMethod
    2019-07-30 11:27:28.648 zwm, put map: {null=null, 数据结构与算法=4, 网络协议=3, Android=1}
    2019-07-30 11:27:28.648 zwm, get key: null, value: null
    2019-07-30 11:27:28.648 zwm, putAll map: {null=null, Java=200, 数据结构与算法=400, 网络协议=300, Android=100}
    2019-07-30 11:27:28.649 zwm, get key: 数据结构与算法, value: 400
    2019-07-30 11:27:28.649 zwm, remove key: 网络协议, value: 300
    2019-07-30 11:27:28.649 zwm, containsKey: Android, result: true
    2019-07-30 11:27:28.649 zwm, containsValue: 200, result: true
    2019-07-30 11:27:28.649 zwm, keySet: [null, Java, 数据结构与算法, Android]
    2019-07-30 11:27:28.650 zwm, values: [null, 200, 400, 100]
    2019-07-30 11:27:28.650 zwm, for entry, key: null, value: null
    2019-07-30 11:27:28.650 zwm, for entry, key: Java, value: 200
    2019-07-30 11:27:28.650 zwm, for entry, key: 数据结构与算法, value: 400
    2019-07-30 11:27:28.650 zwm, for entry, key: Android, value: 100
    2019-07-30 11:27:28.650 zwm, iterator entry, key: null, value: null
    2019-07-30 11:27:28.650 zwm, iterator entry, key: Java, value: 200
    2019-07-30 11:27:28.651 zwm, iterator entry, key: 数据结构与算法, value: 400
    2019-07-30 11:27:28.651 zwm, iterator entry, key: Android, value: 100
    2019-07-30 11:27:28.651 zwm, size: 4
    2019-07-30 11:27:28.651 zwm, clear map: {}
    2019-07-30 11:27:28.651 zwm, isEmpty: true
    

    三、原理

    重要参数

    //HashMap的初始容量为16,HashMap的容量指的是存储元素的数组大小,即桶的数量,必须为2的幂
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    //HashMap的最大容量为2的30次方,若传入的容量过大,将被最大值替换
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    //HashMap的负载因子,当size等于桶的数量*DEFAULT_LOAD_FACTOR时,就需要对HashMap进行扩容,扩容操作就是把桶的数量*2
    //当DEFAULT_LOAD_FACTOR较小时,桶的利用率较低,但发生哈希冲突的概率也较小
    //当DEFAULT_LOAD_FACTOR较大时,桶的利用率较高,但发生哈希冲突的概率也较大
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    //当某一个桶中链表的长度大于等于8时,链表结构会转换成红黑树结构
    static final int TREEIFY_THRESHOLD = 8;
    //当红黑树中的结点数量小于等于6时,红黑树结构会转变为链表结构
    static final int UNTREEIFY_THRESHOLD = 6;
    //当Node数组容量大于等于64的前提下,如果某一个桶中链表长度大于等于8,则会将链表结构转换成红黑树结构
    static final int MIN_TREEIFY_CAPACITY = 64;
    

    数组元素 & 链表结点

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
    
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
    
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
    
        public final int hashCode() { //结点哈希值的计算方法:key的哈希值异或上value的哈希值
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }
    
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
    
        public final boolean equals(Object o) { //重写equals方法
            if (o == this) //对象相等
                return true;
            if (o instanceof Map.Entry) { //对象为Map.Entry实例
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue())) //key跟value的值都相等
                    return true;
            }
            return false;
        }
    }
    

    红黑树结点

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent; //red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev; // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }   
        ...
    }
    

    构造函数

    public HashMap() { //无参构造器
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    
    public HashMap(int initialCapacity) { //指定容量大小,负载因子使用默认值
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    
    public HashMap(int initialCapacity, float loadFactor) { //指定容量大小与负载因子
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
    
    public HashMap(Map<? extends K, ? extends V> m) { //将传入的Map参数中的全部元素逐个添加到HashMap中
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
    
    static final int tableSizeFor(int cap) { //返回一个大于等于且最接近cap的2的幂次方整数。例如给定9,返回2的4次方(即返回16)
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    
    分析tableSizeFor(int cap)方法:
    假定cap形式为00..01XXXXXXX,(X代表可为0也可为1,X前面的1为从最高位开始第一个为1的那一位))
    第一步: n |= n >>> 1; 也就是n变为n与n右移一位之后异或后的值,即 
    n: 00..01XXXXXXX 
    n>>>1: 00..001XXXXXX 
    新n: 00..011XXXXXX 
    第二步: n |= n >>> 2; 也就是n变成n与n右移两位之后异或的值,即 
    n: 00..011XXXXXX 
    n>>>2: 00..00011XXXX 
    新n: 00..01111XXXX 
    后面步骤类似。
    这个算法不断地把第一个1后面的位全部变成1。
    本例由00..01XXXXXXX —> 00..011111111,最后再返回n+1(2的幂次方)。 
    

    public V put(K key, V value)

    //插入方法,传递key值跟value值
    public V put(K key, V value) { 
        return putVal(hash(key), key, value, false, true);
    }
    
    //将key值的哈希值异或该值右移16位后的值,得到新的哈希值
    //key值可以为空,此时哈希值为0
    static final int hash(Object key) { 
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    
    //插入数据
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        
        //若哈希表的数组为空,则通过resize()方法创建
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        
        //计算插入的位置索引:(n - 1) & hash
        if ((p = tab[i = (n - 1) & hash]) == null) //不存在哈希冲突
            //插入结点
            tab[i] = newNode(hash, key, value, null); 
        else { //存在哈希冲突
            Node<K,V> e; K k;
            //判断索引位置的结点的key值是否与要插入数据的key值相同
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k)))) //如果key值相同,则用新value值覆盖旧value值
                e = p;
            else if (p instanceof TreeNode) //如果key值不同,且索引位置的结点为红黑树结点,则在红黑树中插入或更新键值对
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else { //如果key值不同,且索引位置的结点为链表结点,则在链表中插入或更新键值对
                for (int binCount = 0; ; ++binCount) {
                    //如果未找到相同的key值,则插入到表尾
                    //如果链表结点数达到阈值,则将链表转换为红黑树
                    if ((e = p.next) == null) { 
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    
                    //如果找到相同的key值,则用新value值覆盖旧value值,并返回旧值
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        
        //插入成功后,如果实际存在的键值对数量size大于阈值,则调用resize()方法进行扩容
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    
    //向红黑树插入或更新数据
    final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, int h, K k, V v) {
        Class<?> kc = null;
        boolean searched = false;
        TreeNode<K,V> root = (parent != null) ? root() : this;
        for (TreeNode<K,V> p = root;;) {
            int dir, ph; K pk;
            if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.find(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.find(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }
    
            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                Node<K,V> xpn = xp.next;
                TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                xp.next = x;
                x.parent = x.prev = xp;
                if (xpn != null)
                    ((TreeNode<K,V>)xpn).prev = x;
                moveRootToFront(tab, balanceInsertion(root, x));
                return null;
            }
        }
    }
    

    final void treeifyBin(Node<K,V>[] tab, int hash)

    //将链表转成红黑树
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) //链表转成红黑树的条件为数组最小容量大于等于MIN_TREEIFY_CAPACITY
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
    

    final Node<K,V>[] resize()

    //对哈希数组进行扩容
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table; //扩容前的数组
        int oldCap = (oldTab == null) ? 0 : oldTab.length; //扩容前的数组的容量
        int oldThr = threshold; //扩容前的数组的阈值
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) { //若扩容前数组的容量超过最大值,则不再进行扩容
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; //扩大为原来的两倍
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //把每个桶都移动到新的桶中
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null) //如果只有单个结点
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode) //如果是红黑树结点
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { //如果是链表结点
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
    
    //新索引:e.hash & (newCap - 1)
    //扩容后,若哈希值新增参与运算的位为0,那么元素在扩容后位置为:原位置
    //扩容后,若哈希值新增参与运算的位为1,那么元素在扩容后位置为:原位置 + 扩容前的旧容量
    

    public V get(Object key)

    //根据key值获取value值
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && //先检查第一个结点看是否满足要求
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode) //如果是红黑树结点,则到红黑树中找
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do { //如果是链表结点,则遍历链表
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
    

    public void putAll(Map<? extends K, ? extends V> m)

    //将指定Map中的键值对复制到此Map中
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }
    
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict); //调用putVal方法进行插入操作
            }
        }
    }
    

    public V remove(Object key)

    //删除键值对
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode) //找到要删除的红黑树结点
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key); 
                else { //找到要删除的链表结点
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) { 
                            node = e; 
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode) //如果要删除的是红黑树结点
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p) //如果要删除的是索引所在的结点
                    tab[index] = node.next;
                else //如果要删除的是链表结点
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
    

    public boolean containsKey(Object key)

    //判断是否存在相应的键
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }
    

    public boolean containsValue(Object value)

    //判断是否存在相应的值
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }
    

    public Set<K> keySet()

    //获取key的Set集合
    public Set<K> keySet() {
        Set<K> ks;
        return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
    }
    

    public Collection<V> values()

    //获取value的Collection集合
    public Collection<V> values() {
        Collection<V> vs;
        return (vs = values) == null ? (values = new Values()) : vs;
    }
    

    public Set<Map.Entry<K,V>> entrySet()

    //获取Entry的Set集合
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }
    

    public void clear()

    //清空数组
    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }
    

    public int size()

    //获取HashMap元素个数
    public int size() {
        return size;
    }
    

    public boolean isEmpty()

    //判断HashMap是否为空
    public boolean isEmpty() {
        return size == 0;
    }
    

    四、主题

    哈希表
    红黑树
    LinkedHashMap

    相关文章

      网友评论

          本文标题:JDK源码 -- HashMap

          本文链接:https://www.haomeiwen.com/subject/rjuorctx.html