题目
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
思路
动态规划的题目。
- 递归
- 二维数组保存dp[i][j]:到(i,j)位置时的最小值
- 自底向上一维数组 dp[i] = i索引处的最小值
代码
- 递归
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
int sum;
sum = getResult(triangle, 0, 0);
return sum;
}
public int getResult(ArrayList<ArrayList<Integer>> triangle, int l, int k) {
int sum = triangle.get(l).get(k);
if (l < triangle.size() - 1)
sum = sum + Math.min(getResult(triangle, l + 1, k), getResult(triangle, l + 1, k + 1));
return sum;
- 从上至下
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle.size() == 0) {
return 0;
}
int[][] dp = new int[triangle.size()][triangle.get(triangle.size() - 1).size()];
//dp[i][j]:在(i,j)的最小路径
dp[0][0] = triangle.get(0).get(0);
for (int i = 1; i < triangle.size(); i++) {
for (int j = 0; j < triangle.get(i).size(); j++) {
if (j == 0) {
dp[i][j] = dp[i - 1][0] + triangle.get(i).get(j);
} else if (j == triangle.get(i).size() - 1) {
dp[i][j] = dp[i - 1][j - 1] + triangle.get(i).get(j);
} else {
dp[i][j] = triangle.get(i).get(j) + Math.min(dp[i - 1][j], dp[i - 1][j - 1]);
}
}
}
int res = Integer.MAX_VALUE;
//在dp最后一行比较一个最小路径
for (int i = 0; i < dp[dp.length - 1].length; i++) {
res = Math.min(res, dp[dp.length - 1][i]);
}
return res;
}
- 自底向上
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle.size() == 0) {
return 0;
}
int[] dp = new int[triangle.size()];
for (int i = 0; i < dp.length; i++) {
dp[i] = triangle.get(triangle.size() - 1).get(i);
}
//自底向上
//dp[i]:到索引i的最小路径 dp[i] = arr[i] + min(dp[i+1] ,dp[i])
//得到dp[0]
for (int i = dp.length - 2; i >= 0; i--) {
List<Integer> row = triangle.get(i);
for (int j = 0; j < row.size(); j++) {
dp[j] = row.get(j) + Math.min(dp[j], dp[j + 1]);
}
}
return dp[0];
}
网友评论