美文网首页人工智能深度学习·神经网络·计算机视觉
【超级重磅】收藏!300多项优质资源,“计算机视觉”学习的终极列

【超级重磅】收藏!300多项优质资源,“计算机视觉”学习的终极列

作者: Major术业 | 来源:发表于2017-05-26 11:47 被阅读124次

    【来源】hackerlists

    【原文】https://hackerlists.com/computer-vision-resources/

    【备注】源链接为总链接,“阅读原文”可查看全部子链接

    【编辑】Major术业

    TABLE OF CONTENTS

    Books

    Courses

    Papers

    Tutorials and Talks

    Software

    Datasets

    Resources for students

    Links

    1

    BOOKS

    COMPUTER VISION

    Computer Vision: Models, Learning, and Inference– Simon J. D. Prince 2012

    Computer Vision: Theory and Application– Rick Szeliski 2010

    Computer Vision: A Modern Approach (2nd edition)– David Forsyth and Jean Ponce 2011

    Multiple View Geometry in Computer Vision– Richard Hartley and Andrew Zisserman 2004

    Computer Vision– Linda G. Shapiro 2001

    Vision Science: Photons to Phenomenology– Stephen E. Palmer 1999

    Visual Object Recognition synthesis lecture– Kristen Grauman and Bastian Leibe 2011

    Computer Vision for Visual Effects– Richard J. Radke, 2012

    High dynamic range imaging: acquisition, display, and image-based lighting– Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K 2010

    OPENCV PROGRAMMING

    Learning OpenCV: Computer Vision with the OpenCV Library– Gary Bradski and Adrian Kaehler

    Practical Python and OpenCV– Adrian Rosebrock

    OpenCV Essentials– Oscar Deniz Suarez, Mª del Milagro Fernandez Carrobles, Noelia Vallez Enano, Gloria Bueno Garcia, Ismael Serrano Gracia

    MACHINE LEARNING

    Pattern Recognition and Machine Learning– Christopher M. Bishop 2007

    Neural Networks for Pattern Recognition– Christopher M. Bishop 1995

    Probabilistic Graphical Models: Principles and Techniques– Daphne Koller and Nir Friedman 2009

    Pattern Classification– Peter E. Hart, David G. Stork, and Richard O. Duda 2000

    Machine Learning– Tom M. Mitchell 1997

    Gaussian processes for machine learning– Carl Edward Rasmussen and Christopher K. I. Williams 2005

    Learning From Data– Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin 2012

    Neural Networks and Deep Learning– Michael Nielsen 2014

    Bayesian Reasoning and Machine Learning– David Barber, Cambridge University Press, 2012

    FUNDAMENTALS

    Linear Algebra and Its Applications– Gilbert Strang 1995

    2

    COURSES

    COMPUTER VISION

    EENG 512 / CSCI 512 – Computer Vision– William Hoff (Colorado School of Mines)

    Visual Object and Activity Recognition– Alexei A. Efros and Trevor Darrell (UC Berkeley)

    Computer Vision– Steve Seitz (University of Washington)

    Visual Recognition– Kristen Grauman (UT Austin)

    Language and Vision– Tamara Berg (UNC Chapel Hill)

    Convolutional Neural Networks for Visual Recognition– Fei-Fei Li and Andrej Karpathy (Stanford University)

    Computer Vision– Rob Fergus (NYU)

    Computer Vision– Derek Hoiem (UIUC)

    Computer Vision: Foundations and Applications– Kalanit Grill-Spector and Fei-Fei Li (Stanford University)

    High-Level Vision: Behaviors, Neurons and Computational Models– Fei-Fei Li (Stanford University)

    Advances in Computer Vision– Antonio Torralba and Bill Freeman (MIT)

    Computer Vision– Bastian Leibe (RWTH Aachen University)

    Computer Vision 2– Bastian Leibe (RWTH Aachen University)

    COMPUTATIONAL PHOTOGRAPHY

    Image Manipulation and Computational Photography– Alexei A. Efros (UC Berkeley)

    Computational Photography– Alexei A. Efros (CMU)

    Computational Photography– Derek Hoiem (UIUC)

    Computational Photography– James Hays (Brown University)

    Digital & Computational Photography– Fredo Durand (MIT)

    Computational Camera and Photography– Ramesh Raskar (MIT Media Lab)

    Computational Photography– Irfan Essa (Georgia Tech)

    Courses in Graphics– Stanford University

    Computational Photography– Rob Fergus (NYU)

    Introduction to Visual Computing– Kyros Kutulakos (University of Toronto)

    Computational Photography– Kyros Kutulakos (University of Toronto)

    Computer Vision for Visual Effects– Rich Radke (Rensselaer Polytechnic Institute)

    Introduction to Image Processing– Rich Radke (Rensselaer Polytechnic Institute)

    MACHINE LEARNING AND STATISTICAL LEARNING

    Machine Learning– Andrew Ng (Stanford University)

    Learning from Data– Yaser S. Abu-Mostafa (Caltech)

    Statistical Learning– Trevor Hastie and Rob Tibshirani (Stanford University)

    Statistical Learning Theory and Applications– Tomaso Poggio, Lorenzo Rosasco, Carlo Ciliberto, Charlie Frogner, Georgios Evangelopoulos, Ben Deen (MIT)

    Statistical Learning– Genevera Allen (Rice University)

    Practical Machine Learning– Michael Jordan (UC Berkeley)

    Course on Information Theory, Pattern Recognition, and Neural Networks– David MacKay (University of Cambridge)

    Methods for Applied Statistics: Unsupervised Learning– Lester Mackey (Stanford)

    Machine Learning– Andrew Zisserman (University of Oxford)

    OPTIMIZATION

    Convex Optimization I– Stephen Boyd (Stanford University)

    Convex Optimization II– Stephen Boyd (Stanford University)

    Convex Optimization– Stephen Boyd (Stanford University)

    Optimization at MIT– (MIT)

    Convex Optimization– Ryan Tibshirani (CMU)

    3

    PAPERS

    CONFERENCE PAPERS ON THE WEB

    CVPapers– Computer vision papers on the web

    SIGGRAPH Paper on the web– Graphics papers on the web

    NIPS Proceedings– NIPS papers on the web

    Computer Vision Foundation open access

    Annotated Computer Vision Bibliography– Keith Price (USC)

    Calendar of Computer Image Analysis, Computer Vision Conferences– (USC)

    SURVEY PAPERS

    Visionbib Survey Paper List

    Foundations and Trends® in Computer Graphics and Vision

    Computer Vision: A Reference Guide

    4

    TUTORIALS AND TALKS

    COMPUTER VISION

    Computer Vision Talks– Lectures, keynotes, panel discussions on computer vision

    The Three R’s of Computer Vision– Jitendra Malik (UC Berkeley) 2013

    Applications to Machine Vision– Andrew Blake (Microsoft Research) 2008

    The Future of Image Search– Jitendra Malik (UC Berkeley) 2008

    Should I do a PhD in Computer Vision?– Fatih Porikli (Australian National University)

    Graduate Summer School 2013: Computer Vision– IPAM, 2013

    CONFERENCE TALKS

    CVPR 2015– Jun 2015

    ECCV 2014– Sep 2014

    CVPR 2014– Jun 2014

    ICCV 2013– Dec 2013

    ICML 2013– Jul 2013

    CVPR 2013– Jun 2013

    ECCV 2012– Oct 2012

    ICML 2012– Jun 2012

    CVPR 2012– Jun 2012

    3D COMPUTER VISION

    3D Computer Vision: Past, Present, and Future– Steve Seitz (University of Washington) 2011

    Reconstructing the World from Photos on the Internet– Steve Seitz (University of Washington) 2013

    INTERNET VISION

    The Distributed Camera– Noah Snavely (Cornell University) 2011

    Planet-Scale Visual Understanding– Noah Snavely (Cornell University) 2014

    A Trillion Photos– Steve Seitz (University of Washington) 2013

    COMPUTATIONAL PHOTOGRAPHY

    Reflections on Image-Based Modeling and Rendering– Richard Szeliski (Microsoft Research) 2013

    Photographing Events over Time– William T. Freeman (MIT) 2011

    Old and New algorithm for Blind Deconvolution– Yair Weiss (The Hebrew University of Jerusalem) 2011

    A Tour of Modern “Image Processing”– Peyman Milanfar (UC Santa Cruz/Google) 2010

    Topics in image and video processingAndrew Blake (Microsoft Research) 2007

    Computational Photography– William T. Freeman (MIT) 2012

    Revealing the Invisible– Frédo Durand (MIT) 2012

    Overview of Computer Vision and Visual Effects– Rich Radke (Rensselaer Polytechnic Institute) 2014

    LEARNING AND VISION

    Where machine vision needs help from machine learning– William T. Freeman (MIT) 2011

    Learning in Computer Vision– Simon Lucey (CMU) 2008

    Learning and Inference in Low-Level Vision– Yair Weiss (The Hebrew University of Jerusalem) 2009

    OBJECT RECOGNITION

    Object Recognition– Larry Zitnick (Microsoft Research)

    Generative Models for Visual Objects and Object Recognition via Bayesian Inference– Fei-Fei Li (Stanford University)

    GRAPHICAL MODELS

    Graphical Models for Computer Vision– Pedro Felzenszwalb (Brown University) 2012

    Graphical Models– Zoubin Ghahramani (University of Cambridge) 2009

    Machine Learning, Probability and Graphical Models– Sam Roweis (NYU) 2006

    Graphical Models and Applications– Yair Weiss (The Hebrew University of Jerusalem) 2009

    MACHINE LEARNING

    A Gentle Tutorial of the EM Algorithm– Jeff A. Bilmes (UC Berkeley) 1998

    Introduction To Bayesian Inference– Christopher Bishop (Microsoft Research) 2009

    Support Vector Machines– Chih-Jen Lin (National Taiwan University) 2006

    Bayesian or Frequentist, Which Are You?– Michael I. Jordan (UC Berkeley)

    OPTIMIZATION

    Optimization Algorithms in Machine Learning– Stephen J. Wright (University of Wisconsin-Madison)

    Convex Optimization– Lieven Vandenberghe (University of California, Los Angeles)

    Continuous Optimization in Computer Vision– Andrew Fitzgibbon (Microsoft Research)

    Beyond stochastic gradient descent for large-scale machine learning– Francis Bach (INRIA)

    Variational Methods for Computer Vision– Daniel Cremers (Technische Universität München) (lecture 18 missing from playlist)

    DEEP LEARNING

    A tutorial on Deep Learning– Geoffrey E. Hinton (University of Toronto)

    Deep Learning– Ruslan Salakhutdinov (University of Toronto)

    Scaling up Deep Learning– Yoshua Bengio (University of Montreal)

    ImageNet Classification with Deep Convolutional Neural Networks– Alex Krizhevsky (University of Toronto)

    The Unreasonable Effectivness Of Deep LearningYann LeCun (NYU/Facebook Research) 2014

    Deep Learning for Computer Vision– Rob Fergus (NYU/Facebook Research)

    High-dimensional learning with deep network contractions– Stéphane Mallat (Ecole Normale Superieure)

    Graduate Summer School 2012: Deep Learning, Feature Learning– IPAM, 2012

    Workshop on Big Data and Statistical Machine Learning

    Machine Learning Summer School– Reykjavik, Iceland 2014

    Deep Learning Session 1– Yoshua Bengio (Universtiy of Montreal)

    Deep Learning Session 2– Yoshua Bengio (University of Montreal)

    Deep Learning Session 3– Yoshua Bengio (University of Montreal)

    (以上为300篇中的部分,完整内容请查看【Major术业】(ID:Major-2016)公众号)

    相关文章

      网友评论

        本文标题:【超级重磅】收藏!300多项优质资源,“计算机视觉”学习的终极列

        本文链接:https://www.haomeiwen.com/subject/rlotfxtx.html