美文网首页人工智能深度学习·神经网络·计算机视觉
【超级重磅】收藏!300多项优质资源,“计算机视觉”学习的终极列

【超级重磅】收藏!300多项优质资源,“计算机视觉”学习的终极列

作者: Major术业 | 来源:发表于2017-05-26 11:47 被阅读124次

【来源】hackerlists

【原文】https://hackerlists.com/computer-vision-resources/

【备注】源链接为总链接,“阅读原文”可查看全部子链接

【编辑】Major术业

TABLE OF CONTENTS

Books

Courses

Papers

Tutorials and Talks

Software

Datasets

Resources for students

Links

1

BOOKS

COMPUTER VISION

Computer Vision: Models, Learning, and Inference– Simon J. D. Prince 2012

Computer Vision: Theory and Application– Rick Szeliski 2010

Computer Vision: A Modern Approach (2nd edition)– David Forsyth and Jean Ponce 2011

Multiple View Geometry in Computer Vision– Richard Hartley and Andrew Zisserman 2004

Computer Vision– Linda G. Shapiro 2001

Vision Science: Photons to Phenomenology– Stephen E. Palmer 1999

Visual Object Recognition synthesis lecture– Kristen Grauman and Bastian Leibe 2011

Computer Vision for Visual Effects– Richard J. Radke, 2012

High dynamic range imaging: acquisition, display, and image-based lighting– Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K 2010

OPENCV PROGRAMMING

Learning OpenCV: Computer Vision with the OpenCV Library– Gary Bradski and Adrian Kaehler

Practical Python and OpenCV– Adrian Rosebrock

OpenCV Essentials– Oscar Deniz Suarez, Mª del Milagro Fernandez Carrobles, Noelia Vallez Enano, Gloria Bueno Garcia, Ismael Serrano Gracia

MACHINE LEARNING

Pattern Recognition and Machine Learning– Christopher M. Bishop 2007

Neural Networks for Pattern Recognition– Christopher M. Bishop 1995

Probabilistic Graphical Models: Principles and Techniques– Daphne Koller and Nir Friedman 2009

Pattern Classification– Peter E. Hart, David G. Stork, and Richard O. Duda 2000

Machine Learning– Tom M. Mitchell 1997

Gaussian processes for machine learning– Carl Edward Rasmussen and Christopher K. I. Williams 2005

Learning From Data– Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin 2012

Neural Networks and Deep Learning– Michael Nielsen 2014

Bayesian Reasoning and Machine Learning– David Barber, Cambridge University Press, 2012

FUNDAMENTALS

Linear Algebra and Its Applications– Gilbert Strang 1995

2

COURSES

COMPUTER VISION

EENG 512 / CSCI 512 – Computer Vision– William Hoff (Colorado School of Mines)

Visual Object and Activity Recognition– Alexei A. Efros and Trevor Darrell (UC Berkeley)

Computer Vision– Steve Seitz (University of Washington)

Visual Recognition– Kristen Grauman (UT Austin)

Language and Vision– Tamara Berg (UNC Chapel Hill)

Convolutional Neural Networks for Visual Recognition– Fei-Fei Li and Andrej Karpathy (Stanford University)

Computer Vision– Rob Fergus (NYU)

Computer Vision– Derek Hoiem (UIUC)

Computer Vision: Foundations and Applications– Kalanit Grill-Spector and Fei-Fei Li (Stanford University)

High-Level Vision: Behaviors, Neurons and Computational Models– Fei-Fei Li (Stanford University)

Advances in Computer Vision– Antonio Torralba and Bill Freeman (MIT)

Computer Vision– Bastian Leibe (RWTH Aachen University)

Computer Vision 2– Bastian Leibe (RWTH Aachen University)

COMPUTATIONAL PHOTOGRAPHY

Image Manipulation and Computational Photography– Alexei A. Efros (UC Berkeley)

Computational Photography– Alexei A. Efros (CMU)

Computational Photography– Derek Hoiem (UIUC)

Computational Photography– James Hays (Brown University)

Digital & Computational Photography– Fredo Durand (MIT)

Computational Camera and Photography– Ramesh Raskar (MIT Media Lab)

Computational Photography– Irfan Essa (Georgia Tech)

Courses in Graphics– Stanford University

Computational Photography– Rob Fergus (NYU)

Introduction to Visual Computing– Kyros Kutulakos (University of Toronto)

Computational Photography– Kyros Kutulakos (University of Toronto)

Computer Vision for Visual Effects– Rich Radke (Rensselaer Polytechnic Institute)

Introduction to Image Processing– Rich Radke (Rensselaer Polytechnic Institute)

MACHINE LEARNING AND STATISTICAL LEARNING

Machine Learning– Andrew Ng (Stanford University)

Learning from Data– Yaser S. Abu-Mostafa (Caltech)

Statistical Learning– Trevor Hastie and Rob Tibshirani (Stanford University)

Statistical Learning Theory and Applications– Tomaso Poggio, Lorenzo Rosasco, Carlo Ciliberto, Charlie Frogner, Georgios Evangelopoulos, Ben Deen (MIT)

Statistical Learning– Genevera Allen (Rice University)

Practical Machine Learning– Michael Jordan (UC Berkeley)

Course on Information Theory, Pattern Recognition, and Neural Networks– David MacKay (University of Cambridge)

Methods for Applied Statistics: Unsupervised Learning– Lester Mackey (Stanford)

Machine Learning– Andrew Zisserman (University of Oxford)

OPTIMIZATION

Convex Optimization I– Stephen Boyd (Stanford University)

Convex Optimization II– Stephen Boyd (Stanford University)

Convex Optimization– Stephen Boyd (Stanford University)

Optimization at MIT– (MIT)

Convex Optimization– Ryan Tibshirani (CMU)

3

PAPERS

CONFERENCE PAPERS ON THE WEB

CVPapers– Computer vision papers on the web

SIGGRAPH Paper on the web– Graphics papers on the web

NIPS Proceedings– NIPS papers on the web

Computer Vision Foundation open access

Annotated Computer Vision Bibliography– Keith Price (USC)

Calendar of Computer Image Analysis, Computer Vision Conferences– (USC)

SURVEY PAPERS

Visionbib Survey Paper List

Foundations and Trends® in Computer Graphics and Vision

Computer Vision: A Reference Guide

4

TUTORIALS AND TALKS

COMPUTER VISION

Computer Vision Talks– Lectures, keynotes, panel discussions on computer vision

The Three R’s of Computer Vision– Jitendra Malik (UC Berkeley) 2013

Applications to Machine Vision– Andrew Blake (Microsoft Research) 2008

The Future of Image Search– Jitendra Malik (UC Berkeley) 2008

Should I do a PhD in Computer Vision?– Fatih Porikli (Australian National University)

Graduate Summer School 2013: Computer Vision– IPAM, 2013

CONFERENCE TALKS

CVPR 2015– Jun 2015

ECCV 2014– Sep 2014

CVPR 2014– Jun 2014

ICCV 2013– Dec 2013

ICML 2013– Jul 2013

CVPR 2013– Jun 2013

ECCV 2012– Oct 2012

ICML 2012– Jun 2012

CVPR 2012– Jun 2012

3D COMPUTER VISION

3D Computer Vision: Past, Present, and Future– Steve Seitz (University of Washington) 2011

Reconstructing the World from Photos on the Internet– Steve Seitz (University of Washington) 2013

INTERNET VISION

The Distributed Camera– Noah Snavely (Cornell University) 2011

Planet-Scale Visual Understanding– Noah Snavely (Cornell University) 2014

A Trillion Photos– Steve Seitz (University of Washington) 2013

COMPUTATIONAL PHOTOGRAPHY

Reflections on Image-Based Modeling and Rendering– Richard Szeliski (Microsoft Research) 2013

Photographing Events over Time– William T. Freeman (MIT) 2011

Old and New algorithm for Blind Deconvolution– Yair Weiss (The Hebrew University of Jerusalem) 2011

A Tour of Modern “Image Processing”– Peyman Milanfar (UC Santa Cruz/Google) 2010

Topics in image and video processingAndrew Blake (Microsoft Research) 2007

Computational Photography– William T. Freeman (MIT) 2012

Revealing the Invisible– Frédo Durand (MIT) 2012

Overview of Computer Vision and Visual Effects– Rich Radke (Rensselaer Polytechnic Institute) 2014

LEARNING AND VISION

Where machine vision needs help from machine learning– William T. Freeman (MIT) 2011

Learning in Computer Vision– Simon Lucey (CMU) 2008

Learning and Inference in Low-Level Vision– Yair Weiss (The Hebrew University of Jerusalem) 2009

OBJECT RECOGNITION

Object Recognition– Larry Zitnick (Microsoft Research)

Generative Models for Visual Objects and Object Recognition via Bayesian Inference– Fei-Fei Li (Stanford University)

GRAPHICAL MODELS

Graphical Models for Computer Vision– Pedro Felzenszwalb (Brown University) 2012

Graphical Models– Zoubin Ghahramani (University of Cambridge) 2009

Machine Learning, Probability and Graphical Models– Sam Roweis (NYU) 2006

Graphical Models and Applications– Yair Weiss (The Hebrew University of Jerusalem) 2009

MACHINE LEARNING

A Gentle Tutorial of the EM Algorithm– Jeff A. Bilmes (UC Berkeley) 1998

Introduction To Bayesian Inference– Christopher Bishop (Microsoft Research) 2009

Support Vector Machines– Chih-Jen Lin (National Taiwan University) 2006

Bayesian or Frequentist, Which Are You?– Michael I. Jordan (UC Berkeley)

OPTIMIZATION

Optimization Algorithms in Machine Learning– Stephen J. Wright (University of Wisconsin-Madison)

Convex Optimization– Lieven Vandenberghe (University of California, Los Angeles)

Continuous Optimization in Computer Vision– Andrew Fitzgibbon (Microsoft Research)

Beyond stochastic gradient descent for large-scale machine learning– Francis Bach (INRIA)

Variational Methods for Computer Vision– Daniel Cremers (Technische Universität München) (lecture 18 missing from playlist)

DEEP LEARNING

A tutorial on Deep Learning– Geoffrey E. Hinton (University of Toronto)

Deep Learning– Ruslan Salakhutdinov (University of Toronto)

Scaling up Deep Learning– Yoshua Bengio (University of Montreal)

ImageNet Classification with Deep Convolutional Neural Networks– Alex Krizhevsky (University of Toronto)

The Unreasonable Effectivness Of Deep LearningYann LeCun (NYU/Facebook Research) 2014

Deep Learning for Computer Vision– Rob Fergus (NYU/Facebook Research)

High-dimensional learning with deep network contractions– Stéphane Mallat (Ecole Normale Superieure)

Graduate Summer School 2012: Deep Learning, Feature Learning– IPAM, 2012

Workshop on Big Data and Statistical Machine Learning

Machine Learning Summer School– Reykjavik, Iceland 2014

Deep Learning Session 1– Yoshua Bengio (Universtiy of Montreal)

Deep Learning Session 2– Yoshua Bengio (University of Montreal)

Deep Learning Session 3– Yoshua Bengio (University of Montreal)

(以上为300篇中的部分,完整内容请查看【Major术业】(ID:Major-2016)公众号)

相关文章

网友评论

    本文标题:【超级重磅】收藏!300多项优质资源,“计算机视觉”学习的终极列

    本文链接:https://www.haomeiwen.com/subject/rlotfxtx.html