美文网首页
[LeetCode] Problems of 3Sum

[LeetCode] Problems of 3Sum

作者: hugo54 | 来源:发表于2020-01-07 13:33 被阅读0次

    15. 3Sum

    In this problem, we use three pointers to get no repeating tuples, one for iteration and two for shrinking the solution space.

    class Solution {
        public List<List<Integer>> threeSum(int[] nums) {
            if (nums == null || nums.length < 3) {
                return new ArrayList<>();
            }
            // quick sort
            Arrays.sort(nums);
            List<List<Integer>> lists = new ArrayList<>();
            for (int i = 0; i < nums.length; i++) {
                // no 3sum tuple in the rest of the sorted array
                if (nums[i] > 0) {
                    return lists;
                }
                // If nums[i] is duplicated with nums[i - i], skips this round of loop.
                if (i > 0 && nums[i] == nums[i - 1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.length - 1;
                while (left < right) {
                    if (nums[i] + nums[left] + nums[right] == 0) {
                        lists.add(Arrays.asList(nums[i], nums[left], nums[right]));
                        // skips duplicated elements (if it exists)
                        while (left < right && nums[left] == nums[left + 1]) {
                            left = left + 1;
                        }
                        while (left < right && nums[right] == nums[right - 1]) {
                            right = right - 1;
                        }
                        // moves to the next element
                        left = left + 1;
                        right = right - 1;
                    } else if (nums[i] + nums[left] + nums[right] > 0) {
                        right = right - 1;
                    } else {
                        left = left + 1;
                    }
                }
            }
            return lists;
        }
    }
    

    16. 3Sum Closest

    class Solution {
        public int threeSumClosest(int[] nums, int target) {
            // corner cases
            if (nums.length == 1) {
                return nums[0];
            }
            if (nums.length == 2) {
                int diff1 = Math.abs(nums[0] - target);
                int diff2 = Math.abs(nums[1] - target);
                return Math.min(diff1, diff2);
            }
    
            Arrays.sort(nums);
            int closestSum = nums[0] + nums[1] + nums[nums.length - 1];
            for (int i = 0; i < nums.length; i++) {
                // If nums[i] is duplicated with nums[i - i], skip this round of loop.
                if (i - 1 >= 0 && nums[i] == nums[i - 1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.length - 1;
                while (left < right) {
                    int sum = nums[i] + nums[left] + nums[right];
                    if (sum > target) {
                        right--;
                    } else if (sum < target){
                        left++;
                    } else {
                        return sum;
                    }
                    int diffOld = Math.abs(closestSum - target);
                    int diffNew = Math.abs(sum - target);
                    if (diffNew < diffOld) {
                        closestSum = sum;
                    }
                }
            }
    
            return closestSum;
        }
    }
    

    259. 3Sum Smaller

    In this problem, we should count the numbers of tuples which is smaller than the target, and we would not skip those duplicated tuples.

    class Solution {
        public int threeSumSmaller(int[] nums, int target) {
            if (nums.length <= 2) {
                return 0;
            }
    
            Arrays.sort(nums);
            int count = 0;
            for (int i = 0; i < nums.length; i++) {
                int left = i + 1;
                int right = nums.length - 1;
                while (left < right) {  
                    int sum = nums[i] + nums[left] + nums[right];
                    if (sum < target) {
                        count += right - left;
                        left++;
                    } else {
                        right--;
                    }
                }
            }
    
            return count;
        }
    }
    

    18. 4Sum

    In this problem, we use four pointers to get no repeating tuples, two for iteration and two for shrinking the solution space.

    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.List;
    
    class Solution {
        public List<List<Integer>> fourSum(int[] nums, int target) {
            // corner case
            List<List<Integer>> result = new ArrayList<>();
            if (nums == null || nums.length < 4) {
                return result;
            }
    
            Arrays.sort(nums);
            int length = nums.length;
            // the range of i is [0, length - 3), 
            // that is because there are always three elements
            // nums[j], nums[left] and nums[right] lining up on the right of nums[i],
            // thus the right excluding endpoint is (length - 3)
            for (int i = 0; i < length - 3; i++) {
                // skips duplicated i
                if (i > 0 && nums[i] == nums[i - 1]) {
                    continue;
                }
                // if the minimum of i loops is larger than target, skips the rest
                int iMin = nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3];
                if (iMin > target) {
                    break;
                }
                // if the maximum of i loops is smaller than target, ignore this round
                int iMax = nums[i] + nums[length - 3] + nums[length - 2] + nums[length - 1];
                if (iMax < target) {
                    continue;
                }
                // the range of j is [i + 1, length - 2), 
                // that is because there are always two elements
                // nums[left] and nums[right] lining up on the right of nums[j],
                // thus the right excluding endpoint is (length - 2)
                for (int j = i + 1; j < length - 2; j++) {
                    if (j > i + 1 && nums[j] == nums[j - 1]) {
                        continue;
                    }
                    int left = j + 1;
                    int right = length - 1;
                    // for a fixed nums[i],
                    // if the minimum of j loops is larger than target, ignore this round
                    int jMin = nums[i] + nums[j] + nums[left] + nums[left + 1];
                    if (jMin > target) {
                        continue;
                    }
                    // for a fixed nums[i],
                    // if the maximum of j loops is smaller than target, ignore this round
                    int jMax = nums[i] + nums[j] + nums[right - 1] + nums[right];
                    if (jMax < target) {
                        continue;
                    }
                    while (left < right) {
                        int sum = nums[i] + nums[j] + nums[left] + nums[right];
                        if (sum == target) {
                            result.add(
                                Arrays.asList(nums[i], nums[j], nums[left], nums[right]));
                            while (left < right && nums[left] == nums[left - 1]) {
                                left++;
                            }
                            while (left < right && nums[right] == nums[right + 1]) {
                                right--;
                            }
                            left++;
                            right--;
                        } else if (sum > target) {
                            right--;
                        } else {
                            left++;
                        }
                    }
                }
            }
            return result;
        }
    }
    

    相关文章

      网友评论

          本文标题:[LeetCode] Problems of 3Sum

          本文链接:https://www.haomeiwen.com/subject/rlpractx.html