美文网首页高性能服务分布式缓存redis
优酷土豆的Redis服务平台化之路

优酷土豆的Redis服务平台化之路

作者: meng_philip123 | 来源:发表于2016-06-24 07:21 被阅读365次

    优酷土豆的Redis服务平台化之路


    1

    Redis架构的方案经历阶段

    1.1. 客户端分片

    客户端分片:

    优点

    不依赖于第三方中间件,实现方法和代码自己掌控,可随时调整

    这种分片机制的性能比代理式更好(少了一个中间分发环节)

    可控的分发请求,分发压力落在客户端,无服务器压力增加

    缺点

    不能平滑的水平扩展节点,扩容/缩容时,必须手动调整分片程序

    出现故障,不能自动转移,运维性很差

    客户端得自己维护一套路由算法

    升级复杂

    1.2. Twemproxy

    Twemproxy:

    优点

    运维成本低。业务方不用关心后端Redis实例,跟操作Redis一样

    Proxy 的逻辑和存储的逻辑是隔离的

    缺点

    代理层多了一次转发,性能有所损耗

    进行扩容/缩容时候,部分数据可能会失效,需要手动进行迁移,对运维要求较高,而且难以做到平滑的扩缩容

    出现故障,不能自动转移,运维性很差

    升级复杂

    1.3. Redis Cluster

    Redis Cluster:

    优点

    无中心节点

    数据按照Slot存储分布在多个Redis实例上

    平滑的进行扩容/缩容节点

    自动故障转移(节点之间通过Gossip协议交换状态信息,进行投票机制完成Slave到Master角色的提升)

    降低运维成本,提高了系统的可扩展性和高可用性

    缺点

    严重依赖外部Redis-Trib

    缺乏监控管理

    需要依赖Smart Client(连接维护, 缓存路由表, MultiOp和Pipeline支持)

    Failover节点的检测过慢,不如“中心节点ZooKeeper”及时

    Gossip消息的开销

    无法根据统计区分冷热数据

    Slave“冷备”,不能缓解读压力

    1.4. Proxy+Redis Cluster

    Smart Client vs Proxy:

    优点

    Smart Client:

    a. 相比于使用代理,减少了一层网络传输的消耗,效率较高。

    b. 不依赖于第三方中间件,实现方法和代码自己掌控,可随时调整。

    Proxy:

    a. 提供一套HTTP Restful接口,隔离底层存储。对客户端完全透明,跨语言调用。

    b. 升级维护较为容易,维护Redis Cluster,只需要平滑升级Proxy。

    c. 层次化存储,底层存储做冷热异构存储。

    d. 权限控制,Proxy可以通过秘钥控制白名单,把一些不合法的请求都过滤掉。并且也可以控制用户请求的超大Value进行控制,和过滤。

    e. 安全性,可以屏蔽掉一些危险命令,比如Keys、Save、Flush All等。

    f. 容量控制,根据不同用户容量申请进行容量限制。

    g. 资源逻辑隔离,根据不同用户的Key加上前缀,来进行资源隔离。

    h. 监控埋点,对于不同的接口进行埋点监控等信息。

    缺点

    Smart Client:

    a. 客户端的不成熟,影响应用的稳定性,提高开发难度。

    b. MultiOp和Pipeline支持有限。

    c. 连接维护,Smart客户端对连接到集群中每个结点Socket的维护。

    Proxy:

    a.  代理层多了一次转发,性能有所损耗。

    b.进行扩容/缩容时候对运维要求较高,而且难以做到平滑的扩缩容。

    2

    为什么选择Nginx开发Proxy

    1.单Master多Work模式,每个Work跟Redis一样都是单进程单线程模式,并且都是基

    于Epoll事件驱动的模式。

    2.Nginx采用了异步非阻塞的方式来处理请求,高效的异步框架。

    3.内存占用少,有自己的一套内存池管理方式,。将大量小内存的申请聚集到一块,能够比Malloc 更快。减少内存碎片,防止内存泄漏。减少内存管理复杂度。

    4.  为了提高Nginx的访问速度,Nginx使用了自己的一套连接池。

    5.  最重要的是支持自定义模块开发。

    6.  业界内,对于Nginx,Redis的口碑可称得上两大神器。性能也就不用说了。

    3

    Proxy+Redis Cluster介绍

    3.1  Proxy+Redis Cluster架构方案介绍

    1. 用户在ACL平台申请集群资源,如果申请成功返回秘钥信息。

    2. 用户请求接口必须包含申请的秘钥信息,请求至LVS服务器。

    3. LVS根据负载均衡策略将请求转发至Nginx Proxy。

    4. Nginx Proxy首先会获取秘钥信息,然后根据秘钥信息去ACL服务上获取集群的种子信息。(种子信息是集群内任意几台IP:PORT节点)

    然后把秘钥信息和对应的集群种子信息缓存起来。并且第一次访问会根据种子IP:PORT获取集群Slot对应节点的Mapping路由信息,进行缓存起来。最后根据Key计算SlotId,从缓存路由找到节点信息。

    5. 把相应的K/V信息发送到对应的Redis节点上。

    6. Nginx Proxy定时(60s)上报请求接口埋点的QPS,RT,Err等信息到Open-Falcon平台。

    7. Redis Cluster定时(60s)上报集群相关指标的信息到Open-Falcon平台。

    3.2  Nginx Proxy功能介绍

    目前支持的功能:

    HTTP Restful接口:

    解析用户Post过来的数据, 并且构建Redis协议。客户端不需要开发Smart Client, 对客户端完全透明、跨语言调用

    权限控制:

    根据用户Post数据获取AppKey,Uri, 然后去ACL Service服务里面进行认证。如果认证通过,会给用户返回相应的集群种子IP,以及相应的过期时间限制等信息

    限制数据大小:

    获取用户Post过来的数据,对Key,Value长度进行限制,避免产生超大的Key,Value,打满网卡、阻塞Proxy

    数据压缩/解压:

    如果是写请求,对Value进行压缩(Snappy),然后在把压缩后的数据存储到Redis Cluster。

    如果是读请求,把Value从Redis Cluster读出来,然后对Value进行解压,最后响应给用户。

    缓存路由信息:

    维护路由信息,Slot对应的节点的Mapping信息

    结果聚合:

    MultiOp支持

    批量指令支持(Pipeline/Redis+Lua+EVALSHA进行批量指令执行)

    资源逻辑隔离:

    根据用户Post数据获取该用户申请的NameSpace,然后以NameSpace作为该用户请求Key的前缀,从而达到不同用户的不同NameSpace,进行逻辑资源隔离

    重试策略:

    针对后端Redis节点出现Moved,Ask,Err,TimeOut等进行重试,重试次数可配置

    连接池:

    维护用户请求的长连接,维护后端服务器的长连接

    配额管理:

    根据用户的前缀(NameSpace), 定时的去抓取RANDOMKEY,根据一定的比率,估算出不同用户的容量大小值,然后在对用户的配额进行限制管理

    过载保护:

    通过在Nginx Proxy Limit模块进行限速,超过集群的承载能力,进行过载保护。从而保证部分用户可用,不至于压垮服务器

    监控管理:

    Nginx Proxy接入了Open-Falcon对系统级别,应用级别,业务级别进行监控和告警

    例如: 接口的QPS,RT,ERR等进行采集监控,并且展示到DashBoard上

    告警阈值的设置非常灵活,配置化

    待开发的功能列表:

    层次化存储:

    利用Nginx Proxy共享内存定制化开发一套LRU本地缓存实现,从而减少网络请求

    冷数据Swap到慢存储,从而实现冷热异构存储

    主动Failover节点:

    由于Redis Cluster是通过Gossip通信, 超过半数以上Master节点通信(cluster-node-timeout)认为当前Master节点宕机,才真的确认该节点宕机。判断节点宕机时间过长,在Proxy层加入Raft算法,加快失效节点判定,主动Failover

    3.3  Nginx Proxy性能优化

    3.3.1  批量接口优化方案

    1. 子请求变为协程

    案例:

    用户需求调用批量接口mget(50Key)要求性能高,吞吐高,响应快。

    问题:

    由于最早用的Nginx Subrequest来做批量接口请求的处理,性能一直不高,CPU利用率也不高,QPS提不起来。通过火焰图观察分析子请求开销比较大。

    解决方案:

    子请求效率较低,因为它需要重新从Server Rewrite开始走一遍Request处理的PHASE。并且子请求共享父请求的内存池,子请求同时并发度过大,导致内存较高。

    协程轻量级的线程,占用内存少。经过调研和测试,单机一两百万个协程是没有问题的,

    并且性能也很高。

    优化前:

    a) 用户请求mget(k1,k2)到Proxy

    b) Proxy根据k1,k2分别发起子请求subrequest1,subrequest2

    c) 子请求根据key计算slotid,然后去缓存路由表查找节点

    d) 子请求请求Redis Cluster的相关节点,然后响应返回给Proxy

    e) Proxy会合并所有的子请求返回的结果,然后进行解析包装返回给用户

    优化后:

    a) 用户请求mget(k1,k2)到Proxy

    b) Proxy根据k1,k2分别计算slotid, 然后去缓存路由表查找节点

    c) Proxy发起多个协程coroutine1, coroutine2并发的请求Redis Cluster的相关节点

    d) Proxy会合并多个协程返回的结果,然后进行解析包装返回给用户

    2. 合并相同槽,批量执行指令,减少网络开销

    案例:

    用户需求调用批量接口mget(50key)要求性能高,吞吐高,响应快。

    问题:

    经过上面协程的方式进行优化后,发现批量接口性能还是提升不够高。通过火焰图观察分析网络开销比较大。

    解决方案:

    因为在Redis Cluster中,批量执行的key必须在同一个slotid。所以,我们可以合并相同slotid的key做为一次请求。然后利用Pipeline/Lua+EVALSHA批量执行命令来减少网络开销,提高性能。

    优化前:

    a) 用户请求mget(k1,k2,k3,k4) 到Proxy。

    b) Proxy会解析请求串,然后计算k1,k2,k3,k4所对应的slotid。

    c) Proxy会根据slotid去路由缓存中找到后端服务器的节点,并发的发起多个请求到后端服务器。

    d) 后端服务器返回结果给Proxy,然后Proxy进行解析获取key对应的value。

    e) Proxy把key,value对应数据包装返回给用户。

    优化后:

    a) 用户请求mget(k1,k2,k3,k4) 到Proxy。

    b) Proxy会解析请求串,然后计算k1,k2,k3,k4所对应的slotid,然后把相同的slotid进行合并为一次Pipeline请求。

    c) Proxy会根据slotid去路由缓存中找到后端服务器的节点,并发的发起多个请求到后端服务器。

    d) 后端服务器返回结果给Proxy,然后Proxy进行解析获取key对应的value。

    e) Proxy把key,value对应数据包装返回给用户。

    3. 对后端并发度的控制

    案例:

    当用户调用批量接口请求mset,如果k数量几百个甚至几千个时,会导致Proxy瞬间同时发起几百甚至几千个协程同时去访问后端服务器Redis Cluster。

    问题:

    Redis Cluster同时并发请求的协程过多,会导致连接数瞬间会很大,甚至超过上限,CPU,连接数忽高忽低,对集群造成不稳定。

    解决方案:

    单个批量请求对后端适当控制并发度进行分组并发请求,反向有利于性能提升,避免超过Redis Cluster连接数,同时Redis Cluster 波动也会小很多,更加的平滑。

    优化前:

    a) 用户请求批量接口mset(200个key)。(这里先忽略合并相同槽的逻辑)

    b) Proxy会解析这200个key,会同时发起200个协程请求并发的去请求Redis Cluster。

    c) Proxy等待所有协程请求完成,然后合并所有协程请求的响应结果,进行解析,包装返回给用户。

    优化后:

    a) 用户请求批量接口mset(200个key)。 (这里先忽略合并相同槽的逻辑)

    b) Proxy会解析这200个key,进行分组。100个key为一组,分批次进行并发请求。

    c) Proxy先同时发起第一组100个协程(coroutine1, coroutine100)请求并发的去请求Redis Cluster。

    d) Proxy等待所有协程请求完成,然后合并所有协程请求的响应结果。

    e) Proxy然后同时发起第二组100个协程(coroutine101, coroutine200)请求并发的去请求Redis Cluster。

    f) Proxy等待所有协程请求完成,然后合并所有协程请求的响应结果。

    g) Proxy把所有协程响应的结果进行解析,包装,返回给用户。

    4.单Work分散到多Work

    案例:

    当用户调用批量接口请求mset,如果k数量几百个甚至几千个时,会导致Proxy瞬间同时发起几百甚至几千个协程同时去访问后端服务器Redis Cluster。

    问题:

    由于Nginx的框架模型是单进程单线程, 所以Proxy发起的协程都会在一个Work上,这样如果发起的协程请求过多就会导致单Work CPU打满,导致Nginx 的每个Work CPU使用率非常不均,内存持续暴涨的情况。(nginx 的内存池只能提前释放大块,不会提前释放小块)

    解决方案:

    增加一层缓冲层代理,把请求的数据进行拆分为多份,然后每份发起请求,控制并发度,在转发给Proxy层,避免单个较大的批量请求打满单Work,从而达到分散多Work,达到Nginx 多个Wrok CPU使用率均衡。

    优化前:

    a) 用户请求批量接口mset(200个key)。(这里先忽略合并相同槽的逻辑)

    b) Proxy会解析这200个key,会同时发起200个协程请求并发的去请求Redis Cluster。

    c) Proxy等待所有协程请求完成,然后合并所有协程请求的响应结果,进行解析,包装返回给用户。

    优化后:

    a) 用户请求批量接口mset(200个key)。(这里先忽略合并相同槽的key的逻辑)

    b) Proxy会解析这200个key,然后进行拆分分组以此来控制并发度。

    c) Proxy会根据划分好的组进行一组一组的发起请求。

    d) Proxy等待所有请求完成,然后合并所有协程请求的响应结果,进行解析,包装返回给用户。

    总结,经过上面一系列优化,我们可以来看看针对批量接口mset(50个k/v)性能对比图,Nginx Proxy的响应时间比Java版本的响应时间快了5倍多。

    Java版本:

    Nginx版本:

    3.3.2  网卡软中断优化

    irqbalance根据系统中断负载的情况,自动迁移中断保持中断的平衡。但是在实时系统中会导致中断自动漂移,对性能造成不稳定因素,在高性能的场合建议关闭。

    1. 首先关闭网卡软中断

    service irqbalance stop

    service cpuspeed stop

    2. 查看网卡是队列

    grep eth /proc/interrupts | awk '{print $1, $NF}'

    77: eth0

    78: eth0-TxRx-0

    79: eth0-TxRx-1

    80: eth0-TxRx-2

    81: eth0-TxRx-3

    82: eth0-TxRx-4

    83: eth0-TxRx-5

    84: eth0-TxRx-6

    85: eth0-TxRx-7

    3. 绑定网卡软中断到CPU0-2号上

    (注意这里的echo 是十六进制)

    echo "1" > /proc/irq/78/smp_affinity

    echo "1" > /proc/irq/79/smp_affinity

    echo "2" > /proc/irq/80/smp_affinity

    echo "2" > /proc/irq/81/smp_affinity

    echo "2" > /proc/irq/82/smp_affinity

    echo "4" > /proc/irq/83/smp_affinity

    echo "4" > /proc/irq/84/smp_affinity

    echo "4" > /proc/irq/85/smp_affinity

    3.3.3  绑定进程到指定的CPU

    绑定nginx或者redis的pid到cpu3-cpu10上:

    taskset -cp 3 1900

    taskset -cp 4 1901

    taskset -cp 5 1902

    taskset -cp 6 1903

    taskset -cp 7 1904

    taskset -cp 8 1905

    taskset -cp 9 1902

    taskset -cp 10 1902

    或者通过Nginx Proxy配置:

    worker_cpu_affinity 绑定CPU亲缘性

    3.3.4  性能优化神器火焰图

    3.4  Redis Cluster运维

    3.4.1 运维功能

    1. 创建集群

    2. 集群扩容/缩容

    3. 节点宕机

    4. 集群升级

    5. 迁移数据

    6. 副本迁移

    7. 手动failover

    8. 手动rebalance

    以上相关运维功能,目前是通过脚本配置化一键式操作,依赖于官方的redis-rebalance.rb进行扩展开发。运维非常方便快捷。

    3.5  性能测试报告

    3.5.1  测试环境

    软件:

    Jmeter

    Nginx Proxy(24核)

    Redis集群(4 Master,4 Slave)

    测试Key(100000)

    硬件:

    OS: Centos6.6

    CPU:24核

    带宽:千兆

    内存:62G

    测试结果:

    场景:普通K/V

    QPS:18W左右

    RT: 99都在10ms以内

    CPU:Nginx Proxy CPU在50%左右

    4

    监控告警

    4.1 系统级别

    通过Open-Falcon Agent采集服务器的CPU、内存、网卡流量、网络连接、磁盘等信息。

    4.2 应用级别

    通过Open-Falcon Plugin采集Nginx/Redis进程级别的CPU,内存,Pid等信息。

    4.3 业务级别

    通过在Proxy里面埋点监控业务接口QPS,RT(50%,99%,999%),请求流量,错误次数等信息,定时的上报给Open-Falcon。

    通过Open-Falcon Plugin采集Redis Cluster集群信息,QPS,连接数等相关指标指标信息。

    作者介绍:

    李航: 5年多互联网工作经验,先后在58同城,汽车之家,优酷土豆集团工作。目前主要在优酷土豆集团任职高级开发工程师,目前主要负责大数据基础平台Redis集群开发及运维等工作。主要关注领域Nginx,Redis,分布式系统,分布式存储。如果对redis/hbase/spark/storm/kafka等大数据领域有深厚的兴趣,可以发送简历给gaosong@youku.com。

    本文来源自“Redis技术交流群”线上分享。李航ID:Lucien_168。群主ID:gnuhpc。后期的分享我们会同期进行。

    相关文章

      网友评论

      本文标题:优酷土豆的Redis服务平台化之路

      本文链接:https://www.haomeiwen.com/subject/rlsodttx.html