美文网首页数据分析
京东用户购买意向预测(1)

京东用户购买意向预测(1)

作者: Sl0wDive | 来源:发表于2020-04-20 20:31 被阅读0次
    京东用户购买预测.png

    背景:京东作为中国最大的自营式电商,在保持高速发展的同时,沉淀了数亿的忠实用户,积累了海量的真实数据。如何从历史数据中找出规律,去预测用户未来的购买需求,让最合适的商品遇见最需要的人,是大数据应用在精准营销中的关键问题,也是所有电商平台在做智能化升级时所需要的核心技术。 以京东商城真实的用户、商品和行为数据(脱敏后)为基础,通过数据挖掘的技术和机器学习的算法,构建用户购买商品的预测模型,输出高潜用户和目标商品的匹配结果,为精准营销提供高质量的目标群体。
    目标:使用京东多个品类下商品的历史销售数据,构建算法模型,预测用户在未来5天内,对某个目标品类下商品的购买意向。

    数据集:

    • 这里涉及到的数据集是京东的数据集:
    • JData_User.csv 用户数据集 105,321个用户
    • JData_Comment.csv 商品评论 558,552条记录
    • JData_Product.csv 预测商品集合 24,187条记录
    • JData_Action_201602.csv 2月份行为交互记录 11,485,424条记录
    • JData_Action_201603.csv 3月份行为交互记录 25,916,378条记录
    • JData_Action_201604.csv 4月份行为交互记录 13,199,934条记录


      image.png
      image.png
      image.png
      image.png

    文章从四个角度出发:
    # 数据清洗
    #数据理解与分析
    #特征提取
    #建立模型


    数据清洗:

        1 数据集完整性验证
        2 检查是否存在缺失值,重复值
        3 对各特征数值进行类型转换,分段等处理
        4 过滤掉无用的信息
        5 去掉无行为交互的商品和用户
        6 去掉浏览量很大而购买量很少的用户(惰性用户/爬虫用户)
    

    首先检查数据集是否完整
    (检查行为表的user是否都来自于用户表)

    import numpy as np
    import pandas as pd
    
    df_user = pd.read_csv('C:\\Users\\18438\\Desktop\\JD_USER\\data\\JData_User.csv',encoding='gbk')
    df_sku = df_user.loc[:,'user_id'].to_frame()
    df_month2 = pd.read_csv('data/JData_Action_201602.csv',encoding='gbk')
    print ('Is action of Feb. from User file? ', len(df_month2) == len(pd.merge(df_sku,df_month2)))
    df_month3 = pd.read_csv('data/JData_Action_201603.csv',encoding='gbk')
    print ('Is action of Mar. from User file? ', len(df_month3) == len(pd.merge(df_sku,df_month3)))
    df_month4 = pd.read_csv('data/JData_Action_201604.csv',encoding='gbk')
    print ('Is action of Apr. from User file? ', len(df_month4) == len(pd.merge(df_sku,df_month4)))
    
    image.png

    利用merge函数可返回两个数据集中共有的部分。再将返回的数据长度与原数据长度进行对比,可发现是否完整。

    检查是否存在重复值并删除

    def deduplicate(filepath, filename, newpath):
        df_file = pd.read_csv(filepath,encoding='gbk')       
        before = df_file.shape[0]
        df_file.drop_duplicates(inplace=True)
        after = df_file.shape[0]
        n_dup = before-after
        print ('No. of duplicate records for ' + filename + ' is: ' + str(n_dup))
        if n_dup != 0:
            df_file.to_csv(newpath, index=None)
        else:
            print ('no duplicate records in ' + filename)
    
    
    deduplicate('data/JData_Action_201602.csv', 'Feb. action', 'data/JData_Action_201602_dedup.csv')
    deduplicate('data/JData_Action_201603.csv', 'Mar. action', 'data/JData_Action_201603_dedup.csv')
    deduplicate('data/JData_Action_201604.csv', 'Feb. action', 'data/JData_Action_201604_dedup.csv')
    deduplicate('data/JData_Comment.csv', 'Comment', 'data/JData_Comment_dedup.csv')
    deduplicate('data/JData_Product.csv', 'Product', 'data/JData_Product_dedup.csv')
    deduplicate('data/JData_User.csv', 'User', 'data/JData_User_dedup.csv')
    
    image.png

    drop_duplicates前后的长度分布记为before ,after
    并直接存入原来文件
    令after-before得到重复的数据长度

    将行为数据中user_id从浮点型转换为整型

    import pandas as pd
    df_month = pd.read_csv('data\JData_Action_201602.csv',encoding='gbk')
    df_month['user_id'] = df_month['user_id'].apply(lambda x:int(x))
    print (df_month['user_id'].dtype)
    df_month.to_csv('data\JData_Action_201602.csv',index=None)
    df_month = pd.read_csv('data\JData_Action_201603.csv',encoding='gbk')
    df_month['user_id'] = df_month['user_id'].apply(lambda x:int(x))
    print (df_month['user_id'].dtype)
    df_month.to_csv('data\JData_Action_201603.csv',index=None)
    df_month = pd.read_csv('data\JData_Action_201604.csv',encoding='gbk')
    df_month['user_id'] = df_month['user_id'].apply(lambda x:int(x))
    print (df_month['user_id'].dtype)
    df_month.to_csv('data\JData_Action_201604.csv',index=None)
    

    利用apply进行类型转换 并直接存入原文件

    对年龄划分区间

    import pandas as pd
    df_user = pd.read_csv('data\JData_User.csv',encoding='gbk')
    
    def tranAge(x):
        if x == u'15岁以下':
            x='1'
        elif x==u'16-25岁':
            x='2'
        elif x==u'26-35岁':
            x='3'
        elif x==u'36-45岁':
            x='4'
        elif x==u'46-55岁':
            x='5'
        elif x==u'56岁以上':
            x='6'
        return x
    df_user['age']=df_user['age'].apply(tranAge)
    df_user.to_csv("data/JData_User.csv")
    print (df_user.groupby(df_user['age']).count())
    

    删除没有age,sex字段的用户

    delete_list = df_user[df_user['age'].isnull()].index
    df_user.drop(delete_list,axis=0,inplace=True)
    delete_list1 = df_user[df_user['sex'].isnull()].index
    df_user.drop(delete_list1,axis=0,inplace=True)
    df_user.to_csv("data/JData_User.csv")
    

    要删除无交互记录的用户和爬虫,惰性用户,首先先对用户的行为进行聚合统计,先构建一张用户-行为表单。

    import pandas as pd
    import numpy as np
    from collections import Counter
    ACTION_201602_FILE = "data/JData_Action_201602.csv"
    ACTION_201603_FILE = "data/JData_Action_201603.csv"
    ACTION_201604_FILE = "data/JData_Action_201604.csv"
    USER_FILE = "data/JData_User.csv"
    USER_TABLE_FILE = "data/User_table.csv"
    

    功能函数: 对每一个user分组的数据进行统计

    def add_type_count(group):
        behavior_type = group.type.astype(int)
        # 用户行为类别
        type_cnt = Counter(behavior_type)
        # 1: 浏览 2: 加购 3: 删除
        # 4: 购买 5: 收藏 6: 点击
        group['browse_num'] = type_cnt[1]
        group['addcart_num'] = type_cnt[2]
        group['delcart_num'] = type_cnt[3]
        group['buy_num'] = type_cnt[4]
        group['favor_num'] = type_cnt[5]
        group['click_num'] = type_cnt[6]
    
        return group[['user_id', 'browse_num', 'addcart_num',
                      'delcart_num', 'buy_num', 'favor_num',
                      'click_num']]
    

    对action数据进行统计

    def get_from_action_data(fname, chunk_size=50000):
        reader = pd.read_csv(fname, header=0, iterator=True,encoding='gbk')
        chunks = []
        loop = True
        while loop:
            try:
                # 只读取user_id和type两个字段
                chunk = reader.get_chunk(chunk_size)[["user_id", "type"]]
                chunks.append(chunk)
            except StopIteration:
                loop = False
                print("Iteration is stopped")
        # 将块拼接为pandas dataframe格式
        df_ac = pd.concat(chunks, ignore_index=True)
        # 按user_id分组,对每一组进行统计,as_index 表示无索引形式返回数据
        df_ac = df_ac.groupby(['user_id'], as_index=False).apply(add_type_count)
        # 将重复的行丢弃
        df_ac = df_ac.drop_duplicates('user_id')
    
        return df_ac
    

    将各个action数据的统计量进行聚合 计算行为之间的转化率

    def merge_action_data():
        df_ac = []
        df_ac.append(get_from_action_data(fname=ACTION_201602_FILE))
        df_ac.append(get_from_action_data(fname=ACTION_201603_FILE))
        df_ac.append(get_from_action_data(fname=ACTION_201604_FILE))
    
        df_ac = pd.concat(df_ac, ignore_index=True)
        # 用户在不同action表中统计量求和
        df_ac = df_ac.groupby(['user_id'], as_index=False).sum()
        # 构造转化率字段
        df_ac['buy_addcart_ratio'] = df_ac['buy_num'] / df_ac['addcart_num']
        df_ac['buy_browse_ratio'] = df_ac['buy_num'] / df_ac['browse_num']
        df_ac['buy_click_ratio'] = df_ac['buy_num'] / df_ac['click_num']
        df_ac['buy_favor_ratio'] = df_ac['buy_num'] / df_ac['favor_num']
        
        # 将大于1的转化率字段置为1(100%)
        df_ac.ix[df_ac['buy_addcart_ratio'] > 1., 'buy_addcart_ratio'] = 1.
        df_ac.ix[df_ac['buy_browse_ratio'] > 1., 'buy_browse_ratio'] = 1.
        df_ac.ix[df_ac['buy_click_ratio'] > 1., 'buy_click_ratio'] = 1.
        df_ac.ix[df_ac['buy_favor_ratio'] > 1., 'buy_favor_ratio'] = 1.
        return df_ac
    
    #从JData_User表中抽取需要的字段
    def get_from_jdata_user():
        df_usr = pd.read_csv(USER_FILE, header=0)
        df_usr = df_usr[["user_id", "age", "sex", "user_lv_cd"]]
        return df_usr
    
    user_base = get_from_jdata_user()
    user_behavior = merge_action_data()
    
    # 连接成一张表,类似于SQL的左连接(left join)
    user_behavior = pd.merge(user_base, user_behavior, on=['user_id'], how='left')
    # 保存为user_table.csv
    user_behavior.to_csv(USER_TABLE_FILE, index=False)
    user_table = pd.read_csv(USER_TABLE_FILE)
    user_table.head()
    
    image.png

    删除无交互记录的用户

    df_naction = df_user[(df_user['browse_num'].isnull()) & (df_user['addcart_num'].isnull()) & (df_user['delcart_num'].isnull()) & (df_user['buy_num'].isnull()) & (df_user['favor_num'].isnull()) & (df_user['click_num'].isnull())]
    df_user.drop(df_naction.index,axis=0,inplace=True)
    

    删除无购买记录的用户

    df_user = df_user[df_user['buy_num']!=0]
    
    df_user.describe()
    
    image.png

    删除爬虫及惰性用户
    由df_user表所知,浏览购买转换比和点击购买转换比均值为0.018,0.030,因此这里认为浏览购买转换比和点击购买转换比小于0.0005的用户为惰性用户

    bindex = df_user[df_user['buy_browse_ratio']<0.0005].index
    df_user.drop(bindex,axis=0,inplace=True)
    cindex = df_user[df_user['buy_click_ratio']<0.0005].index
    df_user.drop(cindex,axis=0,inplace=True)
    df_user.to_csv('data\User_table.csv',index=None)
    

    至此得到最终预测用户数据集,存入原数据。

    数据理解与分析

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    ACTION_201602_FILE = "data/JData_Action_201602.csv"
    ACTION_201603_FILE = "data/JData_Action_201603.csv"
    ACTION_201604_FILE = "data/JData_Action_201604.csv"
    
    def get_from_action_data(fname, chunk_size=50000):
        reader = pd.read_csv(fname, header=0, iterator=True)
        chunks = []
        loop = True
        while loop:
            try:
                chunk = reader.get_chunk(chunk_size)[
                    ["user_id", "sku_id", "type", "time"]]
                chunks.append(chunk)
            except StopIteration:
                loop = False
                print("Iteration is stopped")
    
        df_ac = pd.concat(chunks, ignore_index=True)
        # type=4,为购买
        df_ac = df_ac[df_ac['type'] == 4]
    
        return df_ac[["user_id", "sku_id", "time"]]
    
    df_ac = []
    df_ac.append(get_from_action_data(fname=ACTION_201602_FILE))
    df_ac.append(get_from_action_data(fname=ACTION_201603_FILE))
    df_ac.append(get_from_action_data(fname=ACTION_201604_FILE))
    df_ac = pd.concat(df_ac, ignore_index=True)
    df_ac['time'] = pd.to_datetime(df_ac['time'])
    df_ac['time'] = df_ac['time'].apply(lambda x: x.weekday() + 1)
    

    统计三个月的周一到周日的购买用户个数,商品个数,记录个数

    # 周一到周日每天购买用户个数
    df_user = df_ac.groupby('time')['user_id'].nunique()
    df_user = df_user.to_frame().reset_index()
    df_user.columns = ['weekday', 'user_num']
    
    # 周一到周日每天购买商品个数
    df_item = df_ac.groupby('time')['sku_id'].nunique()
    df_item = df_item.to_frame().reset_index()
    df_item.columns = ['weekday', 'item_num']
    
    # 周一到周日每天购买记录个数
    df_ui = df_ac.groupby('time', as_index=False).size()
    df_ui = df_ui.to_frame().reset_index()
    df_ui.columns = ['weekday', 'user_item_num']
    
    # 条形宽度
    bar_width = 0.2
    # 透明度
    opacity = 0.4
    
    plt.bar(df_user['weekday'], df_user['user_num'], bar_width, 
            alpha=opacity, color='c', label='user')
    plt.bar(df_item['weekday']+bar_width, df_item['item_num'], 
            bar_width, alpha=opacity, color='g', label='item')
    plt.bar(df_ui['weekday']+bar_width*2, df_ui['user_item_num'], 
            bar_width, alpha=opacity, color='m', label='user_item')
    
    plt.xlabel('weekday')
    plt.ylabel('number')
    plt.title('A Week Purchase Table')
    plt.xticks(df_user['weekday'] + bar_width * 3 / 2., (1,2,3,4,5,6,7))
    plt.tight_layout() 
    plt.legend(prop={'size':10})
    
    image.png

    由上图可以看出,周六周日的购买量较少。

    以2016年2月为例,统计一个月中每天的购买用户数,商品数,记录数

    df_ac = get_from_action_data(fname=ACTION_201602_FILE)
    df_ac['time'] = pd.to_datetime(df_ac['time']).apply(lambda x: x.day)
    df_user = df_ac.groupby('time')['user_id'].nunique()
    df_user = df_user.to_frame().reset_index()
    df_user.columns = ['day', 'user_num']
    
    df_item = df_ac.groupby('time')['sku_id'].nunique()
    df_item = df_item.to_frame().reset_index()
    df_item.columns = ['day', 'item_num']
    
    df_ui = df_ac.groupby('time', as_index=False).size()
    df_ui = df_ui.to_frame().reset_index()
    df_ui.columns = ['day', 'user_item_num']
    
    bar_width = 0.2
    opacity = 0.4
    day_range = range(1,len(df_user['day']) + 1, 1)
    plt.figure(figsize=(14,10))
    
    plt.bar(df_user['day'], df_user['user_num'], bar_width, 
            alpha=opacity, color='c', label='user')
    plt.bar(df_item['day']+bar_width, df_item['item_num'], 
            bar_width, alpha=opacity, color='g', label='item')
    plt.bar(df_ui['day']+bar_width*2, df_ui['user_item_num'], 
            bar_width, alpha=opacity, color='m', label='user_item')
    
    plt.xlabel('day')
    plt.ylabel('number')
    plt.title('February Purchase Table')
    plt.xticks(df_user['day'] + bar_width * 3 / 2., day_range)
    # plt.ylim(0, 80)
    plt.tight_layout() 
    plt.legend(prop={'size':9})
    
    image.png

    可从图中看出:2月份5,6,7,8,9,10 这几天购买量非常少,原因可能是中国农历春节,快递不营业

    以2016年3月为例,统计一个月中每天的购买用户数,商品数,记录数

    df_ac = get_from_action_data(fname=ACTION_201603_FILE)
    df_ac['time'] = pd.to_datetime(df_ac['time']).apply(lambda x: x.day)
    df_user = df_ac.groupby('time')['user_id'].nunique()
    df_user = df_user.to_frame().reset_index()
    df_user.columns = ['day', 'user_num']
    
    df_item = df_ac.groupby('time')['sku_id'].nunique()
    df_item = df_item.to_frame().reset_index()
    df_item.columns = ['day', 'item_num']
    
    df_ui = df_ac.groupby('time', as_index=False).size()
    df_ui = df_ui.to_frame().reset_index()
    df_ui.columns = ['day', 'user_item_num']
    
    bar_width = 0.2
    opacity = 0.4
    day_range = range(1,len(df_user['day']) + 1, 1)
    plt.figure(figsize=(14,10))
    
    plt.bar(df_user['day'], df_user['user_num'], bar_width, 
            alpha=opacity, color='c', label='user')
    plt.bar(df_item['day']+bar_width, df_item['item_num'], 
            bar_width, alpha=opacity, color='g', label='item')
    plt.bar(df_ui['day']+bar_width*2, df_ui['user_item_num'], 
            bar_width, alpha=opacity, color='m', label='user_item')
    
    plt.xlabel('day')
    plt.ylabel('number')
    plt.title('March Purchase Table')
    plt.xticks(df_user['day'] + bar_width * 3 / 2., day_range)
    # plt.ylim(0, 80)
    plt.tight_layout() 
    plt.legend(prop={'size':9})
    
    image.png

    从图中分析:3月份14,15,16有可能为节日,造成购物显著增长,总体来看,购物记录多于2月份

    以2016年4月为例,统计一个月中每天的购买用户数,商品数,记录数

    df_ac = get_from_action_data(fname=ACTION_201604_FILE)
    
    df_ac['time'] = pd.to_datetime(df_ac['time']).apply(lambda x: x.day)
    df_user = df_ac.groupby('time')['user_id'].nunique()
    df_user = df_user.to_frame().reset_index()
    df_user.columns = ['day', 'user_num']
    
    df_item = df_ac.groupby('time')['sku_id'].nunique()
    df_item = df_item.to_frame().reset_index()
    df_item.columns = ['day', 'item_num']
    
    df_ui = df_ac.groupby('time', as_index=False).size()
    df_ui = df_ui.to_frame().reset_index()
    df_ui.columns = ['day', 'user_item_num']
    bar_width = 0.2
    opacity = 0.4
    day_range = range(1,len(df_user['day']) + 1, 1)
    plt.figure(figsize=(14,10))
    plt.bar(df_user['day'], df_user['user_num'], bar_width, 
            alpha=opacity, color='c', label='user')
    plt.bar(df_item['day']+bar_width, df_item['item_num'], 
            bar_width, alpha=opacity, color='g', label='item')
    plt.bar(df_ui['day']+bar_width*2, df_ui['user_item_num'], 
            bar_width, alpha=opacity, color='m', label='user_item')
    
    plt.xlabel('day')
    plt.ylabel('number')
    plt.title('April Purchase Table')
    plt.xticks(df_user['day'] + bar_width * 3 / 2., day_range)
    # plt.ylim(0, 80)
    plt.tight_layout() 
    plt.legend(prop={'size':9})
    
    image.png

    从图中分析:可能又有啥节日? 还是说每个月中旬都有较强的购物欲望?或者中旬为大部分人工资发放的时间

    统计三个月的周一到周日的商品类别的销售情况

    def get_from_action_data(fname, chunk_size=50000):
        reader = pd.read_csv(fname, header=0, iterator=True)
        chunks = []
        loop = True
        while loop:
            try:
                chunk = reader.get_chunk(chunk_size)[
                    ["cate", "brand", "type", "time"]]
                chunks.append(chunk)
            except StopIteration:
                loop = False
                print("Iteration is stopped")
    
        df_ac = pd.concat(chunks, ignore_index=True)
        # type=4,为购买
        df_ac = df_ac[df_ac['type'] == 4]
    
        return df_ac[["cate", "brand", "type", "time"]]
    df_ac = []
    df_ac.append(get_from_action_data(fname=ACTION_201602_FILE))
    df_ac.append(get_from_action_data(fname=ACTION_201603_FILE))
    df_ac.append(get_from_action_data(fname=ACTION_201604_FILE))
    df_ac = pd.concat(df_ac, ignore_index=True)
    
    df_ac['time'] = pd.to_datetime(df_ac['time'])
    df_ac['time'] = df_ac['time'].apply(lambda x: x.weekday() + 1)
    
    df_product = df_ac['brand'].groupby([df_ac['time'],df_ac['cate']]).count()
    df_product=df_product.unstack()
    df_product.plot(kind='bar',title='Cate Purchase Table in a Week',figsize=(10,6))
    
    image.png

    由图看出,8号商品总体销量较高,10号商品销量很低,11号商品销量极低,2月8号商品的销售有显著提高,4月4号商品的销量有显著提高。

    相关文章

      网友评论

        本文标题:京东用户购买意向预测(1)

        本文链接:https://www.haomeiwen.com/subject/rnajihtx.html