美文网首页
数据结构与算法学习-归并排序和快速排序

数据结构与算法学习-归并排序和快速排序

作者: 嗨你们好啊 | 来源:发表于2020-05-24 17:57 被阅读0次

代码准备:

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

typedef int Status;

//1.排序算法数据结构设计
//用于要排序数组个数最大值,可根据需要修改
#define MAXSIZE 10000
typedef struct
{
    //用于存储要排序数组,r[0]用作哨兵或临时变量
    int r[MAXSIZE+1];
    //用于记录顺序表的长度
    int length;
}SqList;


//2.排序常用交换函数实现
//交换L中数组r的下标为i和j的值
void swap(SqList *L,int i,int j)
{
    int temp=L->r[i];
    L->r[i]=L->r[j];
    L->r[j]=temp;
}

//3.数组打印
void print(SqList L)
{
    int i;
    for(i=1;i<L.length;i++)
        printf("%d,",L.r[i]);
    printf("%d",L.r[i]);
    printf("\n");
}

归并排序

归并排序(Merging Sort) 就是利用归并的思想实现排序方法. 它的原理是假设初始序列含有n个记录,则可以看成n个有序的子序列. 每个子序列的⻓长度为1,然后两合并.得到[n/2]个长度为2或1的有序子序列, 再两两归并. ......如此重复,直到得到一个长度为n 的有序列为此. 这种排序方法称为2路路归并排序
代码实现

//③ 将有序的SR[i..mid]和SR[mid+1..n]归并为有序的TR[i..n]
void Merge(int SR[],int TR[],int i,int m,int n)
{
    int j,k,l;
    //1.将SR中记录由小到大地并入TR
    for(j=m+1,k=i;i<=m && j<=n;k++)
    {
        if (SR[i]<SR[j])
            TR[k]=SR[i++];
        else
            TR[k]=SR[j++];
    }
    
    //2.将剩余的SR[i..mid]复制到TR
    if(i<=m)
    {
        for(l=0;l<=m-i;l++)
            TR[k+l]=SR[i+l];
    }
    
    //3.将剩余的SR[j..mid]复制到TR
    if(j<=n)
    {
        for(l=0;l<=n-j;l++)
            TR[k+l]=SR[j+l];
    }
}


//② 将SR[s...t] 归并排序为 TR1[s...t];
void MSort(int SR[],int TR1[],int low, int hight){
    int mid;
    int TR2[MAXSIZE+1];
    
    if(low == hight)
        TR1[low] = SR[low];
    else{
        //1.将SR[low...hight] 平分成 SR[low...mid] 和 SR[mid+1,hight];
        mid = (low + hight)/2;
        //2. 递归将SR[low,mid]归并为有序的TR2[low,mid];
        MSort(SR, TR2, low, mid);
        //3. 递归将SR[mid+1,hight]归并为有序的TR2[mid+1,hight];
        MSort(SR, TR2, mid+1, hight);
        //4. 将TR2[low,mid] 与 TR2[mid+1,hight], 归并到TR1[low,hight]中
        Merge(TR2, TR1, low, mid, hight);
    }
}

//① 对顺序表L进行归并排序
void MergeSort(SqList *L){
   
    MSort(L->r,L->r,1,L->length);
}

//12.归并排序(非递归)-->对顺序表L进行非递归排序
//对SR数组中相邻长度为s的子序列进行两两归并到TR[]数组中;
void MergePass(int SR[],int TR[],int s,int length){
  
    int i = 1;
    int j;
    
    //①合并数组
    //s=1 循环结束位置:8 (9-2*1+1=8)
    //s=2 循环结束位置:6 (9-2*2+1=6)
    //s=4 循环结束位置:2 (9-2*4+1=2)
    //s=8 循环结束位置:-6(9-2*8+1=-6) s = 8时,不会进入到循环;
    while (i<= length-2*s+1) {
        //两两归并(合并相邻的2段数据)
        Merge(SR, TR, i, i+s-1, i+2*s-1);
        i = i+2*s;
        
        /*
         s = 1,i = 1,Merge(SR,TR,1,1,2);
         s = 1,i = 3,Merge(SR,TR,3,3,4);
         s = 1,i = 5,Merge(SR,TR,5,5,6);
         s = 1,i = 7,Merge(SR,TR,7,7,8);
         s = 1,i = 9,退出循环;
         */
        
        /*
         s = 2,i = 1,Merge(SR,TR,1,2,4);
         s = 2,i = 5,Merge(SR,TR,5,6,8);
         s = 2,i = 9,退出循环;
         */
        
        /*
         s = 4,i = 1,Merge(SR,TR,1,4,8);
         s = 4,i = 9,退出循环;
         */
    }
    
    //②如果i<length-s+1,表示有2个长度不等的子序列. 其中一个长度为length,另一个小于length
    // 1 < (9-8+1)(2)
    //s = 8时, 1 < (9-8+1)
    if(i < length-s+1){
        //Merge(SR,TR,1,8,9)
        Merge(SR, TR, i, i+s-1, length);
    }else{
        //③只剩下一个子序列;
        for (j = i; j <=length; j++) {
            TR[j] = SR[j];
        }
    }
}

void MergeSort2(SqList *L){
    int *TR = (int *)malloc(sizeof(int) * L->length);
    int k = 1;
    //k的拆分变换是 1,2,4,8;
    while (k < L->length) {
        //将SR数组按照s=2的长度进行拆分合并,结果存储到TR数组中;
        //注意:此时经过第一轮的归并排序的结果是存储到TR数组了;
        MergePass(L->r, TR, k, L->length);
        k = 2*k;
        //将刚刚归并排序后的TR数组,按照s = 2k的长度进行拆分合并. 结果存储到L->r数组中;
        //注意:因为上一轮的排序的结果是存储到TR数组,所以这次排序的数据应该是再次对TR数组排序;
        MergePass(TR, L->r, k, L->length);
        k = 2*k;
        
    }
}

快速排序

快速排序(Quick Sort)的基本思想: 通过一趟排序将待排序记录分割成独⽴立的两部分; 其中一部分记录的关键字均为另一部分记录的关键字小,则可分别对两部分记 录继续进行排序,以达到整个排序有序的目的.
代码实现:

//③交换顺序表L中子表的记录,使枢轴记录到位,并返回其所在位置
//此时在它之前(后)的记录均不大(小)于它
int Partition(SqList *L,int low,int high){
    int pivotkey;
    //pivokey 保存子表中第1个记录作为枢轴记录;
    pivotkey = L->r[low];
    //① 从表的两端交替地向中间扫描;
    while (low < high) {
        
        //② 比较,从高位开始,找到比pivokey更小的值的下标位置;
        while (low < high &&  L->r[high] >= pivotkey)
            high--;
        //③ 将比枢轴值小的记录交换到低端;
        swap(L, low, high);
        //④ 比较,从低位开始,找到比pivokey更大的值的下标位置;
        while (low < high && L->r[low] <= pivotkey)
            low++;
        //⑤ 将比枢轴值大的记录交换到高端;
        swap(L, low, high);
        
    }
    
    //返回枢轴pivokey 所在位置;
    return low;
}

//② 对顺序表L的子序列L->r[low,high]做快速排序;
void QSort(SqList *L,int low,int high){
    int pivot;
    
    if(low < high){
        //将L->r[low,high]一分为二,算出中枢轴值 pivot;
        pivot = Partition(L, low, high);
        printf("pivot = %d L->r[%d] = %d\n",pivot,pivot,L->r[pivot]);
        //对低子表递归排序;
        QSort(L, low, pivot-1);
        //对高子表递归排序
        QSort(L, pivot+1, high);
    }
    
}

//① 调用快速排序(为了保证一致的调用风格)
void QucikSort(SqList *L){
    QSort(L, 1, L->length);
}

//14 快速排序-优化
int Partition2(SqList *L,int low,int high){
   
    int pivotkey;
    
    /**1.优化选择枢轴**/
    //① 计算数组中间的元素的下标值;
    int m = low + (high - low)/2;
    //② 将数组中的L->r[low] 是整个序列中左中右3个关键字的中间值;
    //交换左端与右端的数据,保证左端较小;[9,1,5,8,3,7,4,6,2]
    if(L->r[low]>L->r[high])
        swap(L, low, high);
    //交换中间与右端的数据,保证中间较小; [2,1,5,8,3,7,4,6,9];
    if(L->r[m]>L->r[high])
        swap(L, high, m);
    //交换中间与左端,保证左端较小;[2,1,5,8,3,7,4,6,9]
    if(L->r[m]>L->r[low])
        swap(L, m, low);
    //交换后的序列:3,1,5,8,2,7,4,6,9
    //此时low = 3; 那么此时一定比选择 9,2更合适;
    
    
    /**2.优化不必要的交换**/
    //pivokey 保存子表中第1个记录作为枢轴记录;
    pivotkey = L->r[low];
    //将枢轴关键字备份到L->r[0];
    L->r[0] = pivotkey;
    
    //① 从表的两端交替地向中间扫描;
    while (low < high) {
        //② 比较,从高位开始,找到比pivokey更小的值的下标位置;
        while (low < high &&  L->r[high] >= pivotkey)
            high--;
        
        //③ 将比枢轴值小的记录交换到低端;
        //swap(L, low, high);
        //③ 采用替换的方式将比枢轴值小的记录替换到低端
        L->r[low] = L->r[high];
        
        //④ 比较,从低位开始,找到比pivokey更大的值的下标位置;
        while (low < high && L->r[low] <= pivotkey)
            low++;
        
        //⑤ 将比枢轴值大的记录交换到高端;
        //swap(L, low, high);
        //⑤ 采样替换的方式将比枢轴值大的记录替换到高端
        L->r[high] = L->r[low];
    }
    //将枢轴数值替换会L->r[low]
    L->r[low] = L->r[0];
    
    //返回枢轴pivokey 所在位置;
    return low;
}

//② 对顺序表L的子序列L->r[low,high]做快速排序;
#define MAX_LENGTH_INSERT_SORT 7 //数组长度的阀值
void QSort2(SqList *L,int low,int high){
    int pivot;
    //if(low < high){
    //当high-low 大于常数阀值是用快速排序;
    if((high-low)>MAX_LENGTH_INSERT_SORT){
        //将L->r[low,high]一分为二,算出中枢轴值 pivot;
        pivot = Partition(L, low, high);
        printf("pivot = %d L->r[%d] = %d\n",pivot,pivot,L->r[pivot]);
        //对低子表递归排序;
        QSort(L, low, pivot-1);
        //对高子表递归排序
        QSort(L, pivot+1, high);
    }else{
        //当high-low小于常数阀值是用直接插入排序
        InsertSort(L);
    }
}

//① 快速排序优化
void QuickSort2(SqList *L)
{
    QSort2(L,1,L->length);
}

相关文章

  • 排序算法-堆排序

    参考: Java排序算法(五):堆排序 【算法与数据结构】图说堆排序 【数据结构】排序算法:希尔、归并、快速、堆排...

  • 算法与数据结构路线图

    学习算法与数据结构,深刻理解计算机科学 排序算法:插入、冒泡、选择、希尔、快速、归并、堆排序、计数排序、桶排序、基...

  • 排序算法6:快速排序

    数据结构与算法 快速排序为应用最多的排序算法,因为快速二字而闻名。快速排序和归并排序一样,采用的都是分治思想。 分...

  • java实现快速排序、归并排序、希尔排序、基数排序算法...

    快速排序算法 归并排序算法 希尔排序算法 基数排序算法

  • 数据结构与算法--归并排序

    数据结构与算法--归并排序 归并排序 归并排序基于一种称为“归并”的简单操作。比如考试可能会分年级排名和班级排名,...

  • 排序算法

    常考排序 快速排序 归并排序 归并排序求逆序数对 堆排序 堆排序是指利用堆这种数据结构所设计的一种排序算法。 堆积...

  • 归并排序

    归并排序(Merge Sort): 归并排序是一个相当“稳定”的算法对于其它排序算法,比如希尔排序,快速排序和堆排...

  • 7.基础算法之归并排序,快速排序

    时间复杂度为 O(nlogn) 的排序算法: 归并排序和快速排序归并排序和快速排序都用到了分治思想,非常巧妙。我们...

  • [算法] - NlogN排序算法

    一、归并排序算法 二、快速排序

  • web开发需要知道的几个算法

    算法分类 快速排序算法 深度优先算法 广度优先算法 堆排序算法 归并排序算法

网友评论

      本文标题:数据结构与算法学习-归并排序和快速排序

      本文链接:https://www.haomeiwen.com/subject/ropjahtx.html