使用SQLAlchemy:
要使用ORM
来操作数据库,首先需要创建一个类来与对应的表进行映射。现在以User表
来做为例子,它有自增长的id
、name
、fullname
、password
这些字段,那么对应的类为:
from sqlalchemy import Column,Integer,String
from constants import DB_URI
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
engine = create_engine(DB_URI,echo=True)
# 所有的类都要继承自`declarative_base`这个函数生成的基类
Base = declarative_base(engine)
class User(Base):
# 定义表名为users
__tablename__ = 'users'
# 将id设置为主键,并且默认是自增长的
id = Column(Integer,primary_key=True)
# name字段,字符类型,最大的长度是50个字符
name = Column(String(50))
fullname = Column(String(50))
password = Column(String(100))
# 让打印出来的数据更好看,可选的
def __repr__(self):
return "<User(id='%s',name='%s',fullname='%s',password='%s')>" % (self.id,self.name,self.fullname,self.password)
SQLAlchemy
会自动的设置第一个Integer
的主键并且没有被标记为外键的字段添加自增长的属性。因此以上例子中id
自动的变成自增长的。以上创建完和表映射的类后,还没有真正的映射到数据库当中,执行以下代码将类映射到数据库中:
Base.metadata.create_all()
在创建完数据表,并且做完和数据库的映射后,接下来让我们添加数据进去:
ed_user = User(name='ed',fullname='Ed Jones',password='edspassword')
# 打印名字
print ed_user.name
> ed
# 打印密码
print ed_user.password
> edspassword
# 打印id
print ed_user.id
> None
可以看到,name和password都能正常的打印,唯独id
为None
,这是因为id
是一个自增长的主键,还未插入到数据库中,id
是不存在的。接下来让我们把创建的数据插入到数据库中。和数据库打交道的,是一个叫做Session
的对象:
from sqlalchemy.orm import sessionmaker
Session = sessionmaker(bind=engine)
# 或者
# Session = sessionmaker()
# Session.configure(bind=engine)
session = Session()
ed_user = User(name='ed',fullname='Ed Jones',password='edspassword')
session.add(ed_user)
现在只是把数据添加到session
中,但是并没有真正的把数据存储到数据库中。如果需要把数据存储到数据库中,还要做一次commit
操作:
session.commit()
# 打印ed_user的id
print ed_user.id
> 1
这时候,ed_user
就已经有id。 说明已经插入到数据库中了。有人肯定有疑问了,为什么添加到session
中后还要做一次commit
操作呢,这是因为,在SQLAlchemy
的ORM
实现中,在做commit
操作之前,所有的操作都是在事务中进行的,因此如果你要将事务中的操作真正的映射到数据库中,还需要做commit
操作。既然用到了事务,这里就并不能避免的提到一个回滚操作了,那么看以下代码展示了如何使用回滚(接着以上示例代码):
# 修改ed_user的用户名
ed_user.name = 'Edwardo'
# 创建一个新的用户
fake_user = User(name='fakeuser',fullname='Invalid',password='12345')
# 将新创建的fake_user添加到session中
session.add(fake_user)
# 判断`fake_user`是否在`session`中存在
print(fake_user in session)
> True
# 从数据库中查找name=Edwardo的用户
tmp_user = session.query(User).filter_by(name='Edwardo')
# 打印tmp_user的name
print tmp_user
# 打印出查找到的tmp_user对象,注意这个对象的name属性已经在事务中被修改为Edwardo了。
> <User(name='Edwardo', fullname='Ed Jones', password='edspassword')>
# 刚刚所有的操作都是在事务中进行的,现在来做回滚操作
session.rollback()
# 再打印tmp_user
print(tmp_user)
> <User(name='ed', fullname='Ed Jones', password='edspassword')>
# 再看fake_user是否还在session中
print fake_user in session
> False
接下来看下如何进行查找操作,查找操作是通过session.query()
方法实现的,这个方法会返回一个Query
对象,Query
对象相当于一个数组,装载了查找出来的数据,并且可以进行迭代。具体里面装的什么数据,就要看向session.query()
方法传的什么参数了,如果只是传一个ORM
的类名作为参数,那么提取出来的数据就是都是这个类的实例,比如:
for instance in session.query(User).order_by(User.id):
print(instance)
# 输出所有的user实例
> <User (id=2,name='ed',fullname='Ed Json',password='12345')>
> <User (id=3,name='be',fullname='Be Engine',password='123456')>
如果传递了两个及其两个以上的对象,或者是传递的是ORM
类的属性,那么查找出来的就是元组,例如:
for instance in session.query(User.name):
print(instance)
# 输出所有的查找结果
> ('ed',)
> ('be',)
以及:
for instance in session.query(User.name,User.fullname):
print(instance)
# 输出所有的查找结果
> ('ed', 'Ed Json')
> ('be', 'Be Engine')
或者是:
for instance in session.query(User,User.name).all():
print(instance)
# 输出所有的查找结果
> (<User (id=2,name='ed',fullname='Ed Json',password='12345')>, 'Ed Json')
> (<User (id=3,name='be',fullname='Be Engine',password='123456')>, 'Be Engine')
另外,还可以对查找的结果(Query
)做切片操作:
for instance in session.query(User).order_by(User.id)[1:3]
print(instance)
如果想对结果进行过滤,可以使用filter_by
和filter
两个方法,这两个方法都是用来做过滤的,区别在于,filter_by
是传入关键字参数,filter
是传入条件判断,并且filter
能够传入的条件更多更灵活,请看以下例子:
# 第一种:使用filter_by过滤:
for name in session.query(User.name).filter_by(fullname='Ed Jones'):
print(name)
# 输出结果:
> ('ed',)
# 第二种:使用filter过滤:
for name in session.query(User.name).filter(User.fullname=='Ed Jones'):
print(name)
# 输出结果:
> ('ed',)
如果想深入学习Flask,可以观看这套免费Flask教学视频:Flask入门到项目实战
</article>
版权声明: https://blog.csdn.net/huangyong1314/article/details/80392163
网友评论