美文网首页
单细胞Seurat V5分析流程

单细胞Seurat V5分析流程

作者: KS科研分享与服务 | 来源:发表于2024-03-17 23:59 被阅读0次

    自从seurat V5更新之后呢,很多小伙伴,初学者居多吧,都有点不适应,再加上网上有些人的“煽风点火”,导致大家望而却步,好像这次更新非常可怕一样。其实不然,seurat的更新在我看来并没有多大的变化,不必望而生畏。此外,他的更新也是非常好的,首先第一点如他官网上所述,数据结构发生了很大的改变,这样在运行的时候不会耗费太多的内容。其次我认为最好的地方就是数据整合这里,将目前比较优秀的方法通过一句代码实现,非常方便。这次我们演示一下它的基本分析,其实很简单,也不会有太大的问题。

    首先我们下载安装相关的软件,读入数据,数据读取没有什么变化!

    #install packages
    install.packages('Seurat')
    library(Seurat)
    #安装一些额外的包
    setRepositories(ind = 1:3, addURLs = c('https://satijalab.r-universe.dev', 'https://bnprks.r-universe.dev/'))
    install.packages(c("BPCells", "presto", "glmGamPoi"))
    remotes::install_github("satijalab/seurat-data", quiet = TRUE)
    remotes::install_github("satijalab/azimuth", quiet = TRUE)
    remotes::install_github("satijalab/seurat-wrappers", quiet = TRUE)
    # If users encounter any errors related to the Matrix package, please resolve by re-installing the TFBSTools package using the command below and opening a fresh R session:
    BiocManager::install("TFBSTools", type = "source", force = TRUE)
    
    setwd("/home/ks_ts/data_analysis/seuratV5_test/scRNA_analysis/")
    
    #read data and creat seurat obj
    WT <- Read10X("./scRNA_data/WT_E18/")
    WT <- WT$`Gene Expression`
    WT <- CreateSeuratObject(counts = WT, project = "WT", min.cells = 3, min.features = 200)
    
    GO <- Read10X("./scRNA_data/GO_E18/")
    GO <- GO$`Gene Expression`
    GO <- CreateSeuratObject(counts = GO, project = "GO", min.cells = 3, min.features = 200)
    

    数据质控什么的和V4一样:

    
    #线粒体比例
    WT[["percent.mt"]] <- PercentageFeatureSet(WT, pattern = "^mt-")
    GO[["percent.mt"]] <- PercentageFeatureSet(GO, pattern = "^mt-")
    #血红蛋白基因
    WT[["percent.hb"]] <- PercentageFeatureSet(WT, pattern = "^Hb[^(p)]")
    GO[["percent.hb"]] <- PercentageFeatureSet(GO, pattern = "^Hb[^(p)]")
    
    #核糖体基因
    WT[["percent.rb"]] <- PercentageFeatureSet(WT, pattern = "^Rbs|Rpl")
    GO[["percent.rb"]] <- PercentageFeatureSet(GO, pattern = "^Rbs|Rpl")
    
    p1= VlnPlot(WT, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)
    
    p2 = VlnPlot(GO, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)
    p1/p2
    
    #QC质控
    WT <- subset(WT, subset = nFeature_RNA > 200 & nFeature_RNA < 6000 & nCount_RNA < 30000 &  percent.mt < 5)
    GO <- subset(GO, subset = nFeature_RNA > 200 & nFeature_RNA < 6000 & nCount_RNA < 30000 &  percent.mt < 5)
    
    p3= VlnPlot(WT, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)
    p4 = VlnPlot(GO, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)
    p3/p4
    

    接下来就是数据整合了,也是他更新的地方。提供了很多方法,例如CCA、Harmony、scVI、RPCA等等,选择适合自己的即可!

    
    #merge data
    sce <- merge(WT, y=GO,add.cell.ids = c("WT", "GO"))
    
    
    #NormalizeData & ScaleData
    sce <- NormalizeData(sce)
    sce <- FindVariableFeatures(sce)
    sce <- ScaleData(sce, vars.to.regress = c("percent.mt"))
    sce <- RunPCA(sce, verbose=F)
    
    # methods of Integration
    # CCA integration (method=CCAIntegration)
    # RPCA integration (method=RPCAIntegration)
    # Harmony (method=HarmonyIntegration)
    # JointPCA (method= JointPCAIntegration)
    
    # FastMNN (method= FastMNNIntegration)
    # scVI (method=scVIIntegration)
    
    ###Integrated with CCA
    sce_cca <- IntegrateLayers(object = sce, 
                               method = CCAIntegration, 
                               orig.reduction = "pca", 
                               new.reduction = "integrated.cca",verbose = FALSE)
    
    # re-join layers after integration
    sce_cca[["RNA"]] <- JoinLayers(sce_cca[["RNA"]])
    
    
    sce_scvi <- IntegrateLayers(object = sce, 
                                method = scVIIntegration, 
                                orig.reduction = "pca", 
                                new.reduction = "integrated.scvi",
                                conda_env="/home/ks_ts/miniconda3/envs/scvi-env",
                                verbose = FALSE)
    
    # re-join layers after integration
    sce_scvi[["RNA"]] <- JoinLayers(sce_scvi[["RNA"]])
    
    #================================================================================
    #Perform cca reduction
    Seurat::ElbowPlot(sce_cca, ndims = 50)
    sce_cca <- FindNeighbors(sce_cca, reduction = "integrated.cca", dims = 1:20)
    sce_cca <- FindClusters(sce_cca, resolution = seq(from = 0.1, to = 1.0, by = 0.1))
    sce_cca <- RunUMAP(sce_cca, dims = 1:20, reduction = "integrated.cca")
    # clustree(sce_cca)
    
    #Perform scVI reduction
    Seurat::ElbowPlot(sce_scvi, ndims = 50)
    sce_scvi <- FindNeighbors(sce_scvi, reduction = "integrated.scvi", dims = 1:20)
    sce_scvi <- FindClusters(sce_scvi, resolution = seq(from = 0.1, to = 1.0, by = 0.1))
    sce_scvi <- RunUMAP(sce_scvi, dims = 1:20, reduction = "integrated.scvi")
    # clustree(sce_scvi)
    
    
    #cluster plot
    DimPlot(sce_cca, reduction = "umap", group.by = "orig.ident")+
      ggtitle("CCA")
    DimPlot(sce_scvi, reduction = "umap", group.by = "orig.ident")+
      ggtitle("scvi")
    
    
    DimPlot(sce_cca, reduction = "umap", label = T)+
      ggtitle("CCA")
    DimPlot(sce_scvi, reduction = "umap", label = T)+
      ggtitle("scvi")
    

    然后就是细胞注释了:我的建议还是手动!

    
    #================================================================================
    library(Seurat)
    library(ggplot2)
    
    Allmarkers <- FindAllMarkers(sce_cca, logfc.threshold = 0.3, min.pct = 0.3, only.pos = T)
    write.csv(Allmarkers, file = 'Allmarkers.csv')
    #================================================================================
    #Manual annotation, reference to published articles
    markers <- c("Pparg", "Myh11", "Mrc1", "Flt1", "Col11a1", "Mymk", "Pax7", "Pdgfra","Ttn","Sox2")
    DotPlot(sce_cca, features = markers, col.min = 0)+coord_flip()
    FeaturePlot(sce_cca, features = )
    
    #20 Adipocytes
    #19 SMC
    #13 Macrophages
    #14 Endothelial
    #7,10,21 Tenocytes
    #9 Myoblasts
    #11,12 MuSCs
    #0,1,3,22 Mesenchymal
    #2,4,5,6,8,15,16,18 Myonuclei
    #17 NPCs
    

    差异基因的分析和V4一样:

    #所有细胞类型中两组的差异
    celltypes <- unique(sce_cca$celltype)
    DEGs_celltype <- list()
    
    for (i in 1:length(celltypes)) {
      
      data = subset(sce_cca, celltype==celltypes[i])
      deg = FindMarkers(data,
                        group.by="orig.ident",
                        ident.1 = 'GO',
                        ident.2 = "WT",
                        logfc.threshold=0.25,
                        min.pct = 0.25)
      
      DEGs_celltype[[i]] <- deg
      names(DEGs_celltype)[i] <- celltypes[i]
      
    }
    

    这就是Seurat V5的基本分析了,就这么简单,没有什么难的地方。其他详细内容请在官网观看,给出的步骤很详细了!详细请参考:https://mp.weixin.qq.com/s/s0FlOruxzPEYcXfwfJd33Q

    相关文章

      网友评论

          本文标题:单细胞Seurat V5分析流程

          本文链接:https://www.haomeiwen.com/subject/rrswzdtx.html