美文网首页
tensorflow实现二分类流程

tensorflow实现二分类流程

作者: 笨码农慢慢飞 | 来源:发表于2018-11-26 22:37 被阅读0次

    tensorflow实现分类流程

    生成样本集

    import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.utils import shuffle
    def generate(sample_size,mean,cov,diff,regression):
        num_classes=2
        
        sample_per_class=int(sample_size/2)
        
        X0=np.random.multivariate_normal(mean,cov,sample_per_class)
        Y0=np.zeros(sample_per_class)
        #print("X0:",X0)
        #print("Y0:",Y0)
        for ci,d in enumerate(diff):
            #print("-------------------ci,d---------------------:")
            #print("ci:",ci)
            #print("d:",d)
            
            #print("--------------------X1:y1------------------------:")
            X1=np.random.multivariate_normal(mean+d,cov,sample_per_class)
            Y1=(ci+1)*np.ones(sample_per_class)
            #print("X1:",X1)
            #print("Y1:",Y1)
            X0=np.concatenate((X0,X1))
            Y0=np.concatenate((Y0,Y1))
            #print("---------------------X0,Y0-------------------------:")
    
            #print("X0:",X0)
            #print("Y0:",Y0)
            #print("--------------------X,Y--------------------------:")
            
        if regression==False:
            class_id=[Y1==class_number for class_number in range(num_classes)]
            Y=np.asarray(np.hstack(class_id),dtype=np.float32)
            X,Y=shuffle(X0,Y)
        else:
            
            X,Y=shuffle(X0,Y0)
        #print("X:",X)
        #print("Y:",Y)
        #print("------------------------------------------------:")
        return X,Y
    

    样本可视化

    np.random.seed(10)
    num_classes=2
    
    mean=np.random.randn(num_classes)
    cov=np.eye(num_classes)
    X,Y=generate(1000,mean,cov,[3.0],True)
    
    #print("mean:",mean)
    #print("cov:",cov)
    #print("X:",X)
    #print("Y:",Y)
    
    colors=['r' if l==0 else 'b' for l in Y[:]]
    
    plt.scatter(X[:,0],X[:,1],c=colors)
    
    plt.show()
    
    模拟数据

    使用tensorflow进行分类

    #定义维度
    lab_dim=1
    input_dim=2
    #print(input_dim)
    
    #定义占位符数据
    input_features=tf.placeholder(tf.float32,[None,input_dim])
    input_labels=tf.placeholder(tf.float32,[None,lab_dim])
    
    
    #定义变量
    W=tf.Variable(tf.random_normal([input_dim,lab_dim]),name="weight")
    b=tf.Variable(tf.zeros([lab_dim],name="bias"))
    
    
    #输出数据
    output=tf.nn.sigmoid(tf.matmul(input_features,W)+b)
    
    #交叉熵
    coross_entropy=-(input_labels*tf.log(output)+(1-input_labels)*tf.log(1-output))
    
    #误差
    ser=tf.square(input_labels-output)
    
    #损失函数
    loss=tf.reduce_mean(coross_entropy)
    
    #误差均值
    err=tf.reduce_mean(ser)
    
    #优化器
    optimizer=tf.train.AdamOptimizer(0.04)
    
    train=optimizer.minimize(loss)
    
    maxEpochs=50
    minibatchSize=25
    
    with tf.Session() as sess:
        #初始化所有变量与占位符
        sess.run(tf.global_variables_initializer())
        
        for epoch in range(maxEpochs):
            sumerr=0
            #对于每一个batch
            for i in range(np.int32(len(Y)/minibatchSize)):
                #取出X值
                x1=X[i*minibatchSize:(i+1)*minibatchSize,:]
                #取出Y值
                y1=np.reshape(Y[i*minibatchSize:(i+1)*minibatchSize],[-1,1])
                #改变y的数据结构,变成tensor数据
                tf.reshape(y1,[-1,1])
                
                #对相关结果进行计算
                _,lossval,outputval,errval=sess.run([train,loss,output,err],feed_dict={input_features:x1,input_labels:y1})
                
                #计算误差和
                sumerr=sumerr+errval
            
            print("epoch:",epoch)
            print("cost=",lossval,"err=",sumerr)
     
    
        #结果可视化
        train_X, train_Y = generate(100, mean, cov, [3.0],True)
        colors = ['r' if l == 0 else 'b' for l in train_Y[:]]
        plt.scatter(train_X[:,0], train_X[:,1], c=colors)
        #plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y)
        #plt.colorbar()
    
    
    #    x1w1+x2*w2+b=0
    #    x2=-x1* w1/w2-b/w2
        x = np.linspace(-1,8,200) 
        y=-x*(sess.run(W)[0]/sess.run(W)[1])-sess.run(b)/sess.run(W)[1]
        plt.plot(x,y, label='Fitted line')
        plt.legend()
        plt.show() 
    
    epoch: 0
    cost= 0.28224963 err= 5.835677430033684
    epoch: 1
    cost= 0.1841161 err= 2.9293049834668636
    epoch: 2
    cost= 0.13622522 err= 1.8027594378218055
    epoch: 3
    cost= 0.10920071 err= 1.321009835228324
    epoch: 4
    cost= 0.09234682 err= 1.0732473297975957
    epoch: 5
    cost= 0.081041396 err= 0.926894772797823
    epoch: 6
    cost= 0.07300299 err= 0.8318855110555887
    epoch: 7
    cost= 0.06699502 err= 0.7659151882398874
    epoch: 8
    cost= 0.062306933 err= 0.7177525935694575
    epoch: 9
    cost= 0.058514904 err= 0.6812087508151308
    epoch: 10
    cost= 0.055357553 err= 0.6526279035024345
    epoch: 11
    cost= 0.052668083 err= 0.6297260934952646
    epoch: 12
    cost= 0.050336055 err= 0.6110085289692506
    epoch: 13
    cost= 0.048285052 err= 0.5954574717907235
    epoch: 14
    cost= 0.046460498 err= 0.5823574732639827
    epoch: 15
    cost= 0.044822298 err= 0.571191034920048
    epoch: 16
    cost= 0.0433398 err= 0.5615753585589118
    epoch: 17
    cost= 0.04198938 err= 0.5532208279473707
    epoch: 18
    cost= 0.040752184 err= 0.5459049143246375
    epoch: 19
    cost= 0.039613225 err= 0.5394539169501513
    epoch: 20
    cost= 0.038560122 err= 0.533729906193912
    epoch: 21
    cost= 0.037582446 err= 0.5286223700095434
    epoch: 22
    cost= 0.03667196 err= 0.5240421258495189
    epoch: 23
    cost= 0.035821244 err= 0.5199156226881314
    epoch: 24
    cost= 0.03502427 err= 0.5161824229871854
    epoch: 25
    cost= 0.034275606 err= 0.5127919654041762
    epoch: 26
    cost= 0.03357083 err= 0.5097018567466876
    epoch: 27
    cost= 0.032905858 err= 0.506876300656586
    epoch: 28
    cost= 0.032277178 err= 0.5042847362201428
    epoch: 29
    cost= 0.031681698 err= 0.5019011745171156
    epoch: 30
    cost= 0.031116951 err= 0.49970316601684317
    epoch: 31
    cost= 0.030580308 err= 0.4976714387157699
    epoch: 32
    cost= 0.030069621 err= 0.49578892458521295
    epoch: 33
    cost= 0.029582985 err= 0.4940409708506195
    epoch: 34
    cost= 0.029118799 err= 0.49241474875452695
    epoch: 35
    cost= 0.028675303 err= 0.4908985588190262
    epoch: 36
    cost= 0.028251264 err= 0.48948282841593027
    epoch: 37
    cost= 0.027845193 err= 0.4881584036847926
    epoch: 38
    cost= 0.027456209 err= 0.48691741812217515
    epoch: 39
    cost= 0.027083045 err= 0.48575285974220606
    epoch: 40
    cost= 0.026724808 err= 0.4846585850318661
    epoch: 41
    cost= 0.02638059 err= 0.48362843324866844
    epoch: 42
    cost= 0.026049538 err= 0.4826579857908655
    epoch: 43
    cost= 0.025730899 err= 0.4817419640312437
    epoch: 44
    cost= 0.02542402 err= 0.4808764703484485
    epoch: 45
    cost= 0.025128283 err= 0.4800582237949129
    epoch: 46
    cost= 0.024843078 err= 0.4792831062586629
    epoch: 47
    cost= 0.024567802 err= 0.4785483961677528
    epoch: 48
    cost= 0.024302106 err= 0.4778511731637991
    epoch: 49
    cost= 0.02404523 err= 0.4771889972980716
    
    结果

    欢迎小伙伴留言讨论

    相关文章

      网友评论

          本文标题:tensorflow实现二分类流程

          本文链接:https://www.haomeiwen.com/subject/rsoiqqtx.html