该博客内容大部分参考借鉴了以下博客,写该文章的主要目的是帮助自己梳理知识。希望也能对你有帮助
epoll原理详解及epoll反应堆模型
Go netpoller 网络模型之源码全面解析
设想一个场景:有100万用户同时与一个进程保持着TCP连接,而每一时刻只有几十个或几百个TCP连接是活跃的(接收TCP包),也就是说在每一时刻进程只需要处理这100万连接中的一小部分连接。那么,如何才能高效的处理这种场景呢?
进程是否在每次询问操作系统收集有事件发生的TCP连接时,把这100万个连接告诉操作系统,然后由操作系统找出其中有事件发生的几百个连接呢?
使用select或者poll事件驱动方式解决
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
// 和 select 紧密结合的四个宏:
void FD_CLR(int fd, fd_set *set);
int FD_ISSET(int fd, fd_set *set);
void FD_SET(int fd, fd_set *set);
void FD_ZERO(fd_set *set);
理解 select 的关键在于理解 fd_set,为说明方便,取 fd_set 长度为 1 字节,fd_set 中的每一 bit 可以对应一个文件描述符 fd,则 1 字节长的 fd_set 最大可以对应 8 个 fd。select 的调用过程如下:
- 执行 FD_ZERO(&set), 则 set 用位表示是
0000,0000
- 若 fd=5, 执行 FD_SET(fd, &set); 后 set 变为 0001,0000(第 5 位置为 1)
- 再加入 fd=2, fd=1,则 set 变为
0001,0011
- 执行 select(6, &set, 0, 0, 0) 阻塞等待
- 若 fd=1, fd=2 上都发生可读事件,则 select 返回,此时 set 变为
0000,0011
(注意:没有事件发生的 fd=5 被清空)
基于上面的调用过程,可以得出 select 的特点:
-
可监控的文件描述符个数取决于 sizeof(fd_set) 的值。假设服务器上 sizeof(fd_set)=512,每 bit 表示一个文件描述符,则服务器上支持的最大文件描述符是 512*8=4096。fd_set 的大小调整可参考 【原创】技术系列之 网络模型(二) 中的模型 2,可以有效突破 select 可监控的文件描述符上限
-
将 fd 加入 select 监控集的同时,还要再使用一个数据结构 array 保存放到 select 监控集中的 fd,一是用于在 select 返回后,array 作为源数据和 fd_set 进行 FD_ISSET 判断。二是 select 返回后会把以前加入的但并无事件发生的 fd 清空,则每次开始 select 前都要重新从 array 取得 fd 逐一加入(FD_ZERO 最先),扫描 array 的同时取得 fd 最大值 maxfd,用于 select 的第一个参数
-
可见 select 模型必须在 select 前循环 array(加 fd,取 maxfd),select 返回后循环 array(FD_ISSET 判断是否有事件发生)
所以,select 有如下的缺点:
-
最大并发数限制:使用 32 个整数的 32 位,即 32*32=1024 来标识 fd,虽然可修改,但是有以下第 2, 3 点的瓶颈
-
每次调用 select,都需要把 fd 集合从用户态拷贝到内核态,这个开销在 fd 很多时会很大
-
性能衰减严重:每次 kernel 都需要线性扫描整个 fd_set,所以随着监控的描述符 fd 数量增长,其 I/O 性能会线性下降
poll 的实现和 select 非常相似,只是描述 fd 集合的方式不同,poll 使用 pollfd 结构而不是 select 的 fd_set 结构,poll 解决了最大文件描述符数量限制的问题,但是同样需要从用户态拷贝所有的 fd 到内核态,也需要线性遍历所有的 fd 集合,所以它和 select 只是实现细节上的区分,并没有本质上的区别
epoll
epoll 是 Linux kernel 2.6 之后引入的新 I/O 事件驱动技术,I/O 多路复用的核心设计是 1 个线程处理所有连接的I/O 事件,这一点上 epoll 和 select&poll 是大同小异的。但 select&poll 错误预估了一件事,当数十万并发连接存在时,可能每一毫秒只有数百个活跃的连接,同时其余数十万连接在这一毫秒是非活跃的。select&poll 的使用方法是这样的:返回的活跃连接 == select(全部待监控的连接)
什么时候会调用 select&poll 呢?在你认为需要找出有报文到达的活跃连接时,就应该调用。所以,select&poll 在高并发时是会被频繁调用的。这样,这个频繁调用的方法就很有必要看看它是否有效率,因为,它的轻微效率损失都会被 高频 二字所放大。它有效率损失吗?显而易见,全部待监控连接是数以十万计的,返回的只是数百个活跃连接,这本身就是无效率的表现。被放大后就会发现,处理并发上万个连接时,select&poll 就完全力不从心了。这个时候就该 epoll 上场了,epoll 通过一些新的设计和优化,基本上解决了 select&poll 的问题
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout);
- 调用epoll_create建立一个epoll对象(在epoll文件系统中给这个句柄分配资源);
- 调用epoll_ctl向epoll对象中添加这100万个连接的套接字;
- 调用epoll_wait收集发生事件的连接。
其中,epoll_create 创建一个 epoll 实例并返回 epollfd;epoll_ctl 注册 file descriptor 等待的 I/O 事件(比如 EPOLLIN、EPOLLOUT 等) 到 epoll 实例上;epoll_wait 则是阻塞监听 epoll 实例上所有的 file descriptor 的 I/O 事件,它接收一个用户空间上的一块内存地址 (events 数组),kernel 会在有 I/O 事件发生的时候把文件描述符列表复制到这块内存地址上,然后 epoll_wait 解除阻塞并返回,最后用户空间上的程序就可以对相应的 fd 进行读写了。
epoll原理详解
当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关,如下所示:
struct eventpoll {
...
/*红黑树的根节点,这棵树中存储着所有添加到epoll中的事件,
也就是这个epoll监控的事件*/
struct rb_root rbr;
/*双向链表rdllist保存着将要通过epoll_wait返回给用户的、满足条件的事件*/
struct list_head rdllist;
...
};
我们在调用epoll_create时,内核除了帮我们在epoll文件系统里建了个file结点,在内核cache里建了个红黑树用于存储以后epoll_ctl传来的socket外,还会再建立一个rdllist双向链表,用于存储准备就绪的事件。当epoll_wait调用时,仅仅观察这个rdllist双向链表里有没有数据即可。有数据就返回,没有数据就sleep,等到timeout时间到后即使链表没数据也返回。所以,epoll_wait非常高效。
那么rdllist双向链表数据哪里来呢?所有添加到epoll中的等待事件都会与设备(如网卡)驱动程序建立回调关系,每当相应事件的发生时,就会调用回调方法。这个回调方法在内核中叫做ep_poll_callback,它会把该事件放到上面的rdllist双向链表中。
struct epitem {
...
//红黑树节点
struct rb_node rbn;
//双向链表节点
struct list_head rdllink;
//事件句柄等信息
struct epoll_filefd ffd;
//指向其所属的eventepoll对象
struct eventpoll *ep;
//期待的事件类型
struct epoll_event event;
...
}; // 这里包含每一个事件对应着的信息。
当调用epoll_wait检查是否有发生事件的连接时,只是检查eventpoll对象中的rdllist双向链表是否有epitem元素而已,如果rdllist链表不为空,则这里的事件复制到用户态内存(使用共享内存提高效率)中,同时将事件数量返回给用户。因此epoll_wait效率非常高。epoll_ctl在向epoll对象中添加、修改、删除事件时,从rbr红黑树中查找事件也非常快,也就是说epoll是非常高效的,它可以轻易地处理百万级别的并发连接。
image.png【总结】
- 执行epoll_create()时,创建了红黑树和就绪链表;
- 执行epoll_ctl()时,如果增加socket句柄,则检查在红黑树中是否存在,存在立即返回,不存在则添加到红黑树干上,然后向内核注册回调函数,用于当中断事件来临时向准备就绪链表中插入数据;
- 执行epoll_wait()时立刻返回准备就绪链表里的数据即可
epoll的两种触发模式
epoll有EPOLLLT和EPOLLET两种触发模式,LT(水平触发)是默认的模式,ET(边缘触发)是“高速”模式。
LT模式下,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表。
ET模式下,在它检测到有 I/O 事件时,通过 epoll_wait 调用会得到有事件通知的文件描述符,对于每一个被通知的文件描述符,如可读,则必须将该文件描述符一直读到空,让 errno 返回 EAGAIN 为止,否则下次的 epoll_wait 不会返回余下的数据,会丢掉事件。如果ET模式不是非阻塞的,那这个一直读或一直写势必会在最后一次阻塞。
还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。
image.png
为什么ET模式更高效
如果采用LT模式的话,系统中一旦有大量你不需要读写的就绪文件描述符,它们每次调用epoll_wait都会返回,这样会大大降低处理程序检索自己关心的就绪文件描述符的效率.。而采用ET这种边缘触发模式的话,当被监控的文件描述符上有可读写事件发生时,epoll_wait()会通知处理程序去读写。如果这次没有把数据全部读写完(如读写缓冲区太小),那么下次调用epoll_wait()时,它不会通知你,也就是它只会通知你一次,直到该文件描述符上出现第二次可读写事件才会通知你!!!这种模式比水平触发效率高,系统不会充斥大量你不关心的就绪文件描述符。
ET模式为什么需要非阻塞socket
ET模式(边缘触发)存在的注意点:
1、sockfd 的边缘触发:高并发时,有多个连接同时到达,服务器的 TCP 就绪队列瞬间积累多个就绪连接,由于是边缘触发模式,epoll 只会通知一次,accept 只处理一个连接,导致 TCP 就绪队列中剩下的连接都得不到处理。如果没有一次处理全部请求,则会出现客户端连接不上的问题。不需要讨论 sockfd 是否阻塞,因为epoll_wait() 返回的必定是已经就绪的连接,所以不管是阻塞还是非阻塞,accept() 都会立即返回。
2、阻塞 connfd 的边缘触发:如果不一次性读取一个事件上的数据,会干扰下一个事件,所以必须在读取数据的外部套一层循环,这样才能完整的处理数据。但是外层套循环之后会导致另外一个问题:处理完数据之后,程序会一直卡在 recv() 函数上,因为是阻塞 IO,如果没数据可读,它会一直等在那里,直到有数据可读。但是这个时候,如果用另一个客户端去连接服务器,服务器就不能受理这个新的客户端了。
3、非阻塞 connfd 的边缘触发:和阻塞版本一样,必须在读取数据的外部套一层循环,这样才能完整的处理数据。因为非阻塞 IO 如果没有数据可读时,会立即返回,并设置 errno。这里我们根据 EAGAIN 和 EWOULDBLOCK 来判断数据是否全部读取完毕了,如果读取完毕,就会正常退出循环了。
总结一下:
1、对于监听的 sockfd,最好使用水平触发模式,边缘触发模式会导致高并发情况下,有的客户端会连接不上。如果非要使用边缘触发,可以用 while 来循环 accept()。
2、对于读写的 connfd,水平触发模式下,阻塞和非阻塞效果都一样,建议设置非阻塞。
3、对于读写的 connfd,边缘触发模式下,必须使用非阻塞 IO,并要求一次性地完整读写全部数据。
所以在用EPOLL的时候,我们都用fcntl将描述符置为非阻塞吧,皆大欢喜。
网友评论