本节利用tidytuesday第9周的数据通过哑铃图来分析USA不同行业中男性与女性的比例。喜欢的小伙伴可以关注我的公众号R语言数据分析指南持续分享更多优质资源。后台回复关键词2021-09获取全套代码
library(scales)
library(ggtext)
library(forcats)
library(extrafont)
library(tidyverse)
library(tidytuesdayR)
tuesdata <- tidytuesdayR::tt_load(2021, week = 9)
employed <- tuesdata$employed
employed %>% mutate_if(sapply(employed, is.character), as.factor) %>%
filter(race_gender == "Men" | race_gender == "Women",
year == 2020,
industry != "NA",
industry != "Women",
industry != "White") %>%
ggplot(aes(x = industry_total, y = fct_rev(industry))) +
geom_line(color = "#d95f02", size = 1) +
geom_point(aes(color = race_gender), size = 5) +
scale_color_manual(values = c("#1b9e77", "#7570b3")) +
scale_x_continuous(labels = comma) +
theme_minimal() +
theme(legend.position = "none",
panel.background = element_rect(fill = "#F5F5F5", colour = "#F5F5F5"),
plot.background = element_rect(fill = "#F5F5F5", colour = "#F5F5F5"),
plot.title = element_markdown(size = 20),
plot.title.position = "plot",
text = element_text(family = "Corbel")) +
labs(y = "", x = "Total employed",
title = "In most industries in 2020 in the USA,
there were more <b style='color:#1b9e77'>men</b> employed than <b style='color:#7570b3'>women</b>.")
网友评论