本节我们通过TidyTuesday 2021年第22周的数据集来分析马里奥赛车世界记录,喜欢的小伙伴欢迎关注我,获取数据及代码
加载R包
#devtools::install_github("rensa/ggflags")
library(tidyverse)
library(ggflags)
library(showtext)
font_add_google("Rubik")
showtext_auto()
library(ggforce)
数据清洗
records <- read_csv("records.txt")
drivers <- read_csv("drivers.txt") %>%
mutate(country = case_when(
nation == "USA" ~ "us",
nation == "Australia" ~ "au",
nation == "Canada" ~ "ca",
nation == "Netherlands" ~ "nl",
nation == "UK" ~ "gb",
nation == "Brazil" ~ "br",
nation == "Germany" ~ "de",
nation == "Austria" ~ "at",
nation == "Croatia" ~ "hr",
nation == "France" ~ "fr",
nation == "Ireland" ~ "ie",
nation == "Norway" ~ "no",
nation == "Slovenia" ~ "si"
)) %>%
select(player, nation, country) %>%
distinct()
records_n <- left_join(records, drivers, by = "player")
数据可视化
records_n %>%
filter(track == "Wario Stadium",
type == "Single Lap",
!is.na(nation)) %>%
group_by(track) %>%
mutate(time_rel = time-max(time),
time_rel_prop = (max(time)-time)/max(time)) %>%
ggplot(aes(date, time)) +
geom_line(alpha = 0.5) +
geom_flag(aes(country = country)) +
scale_country() +
scale_y_continuous(breaks = pretty) +
facet_zoom(ylim = c(85.75, 88)) +
theme_bw() +
labs(
title = "Wario Stadium World Records,1997-2021",
y = "Track time (s)",
x = NULL) +
theme(legend.position = "none",
panel.grid.major.y = element_line(colour = "grey95"),
panel.grid.minor.x = element_blank(),
text = element_text(colour = "black", family = "Rubik",
size = 10),
axis.text = element_text(colour = "black", family = "Rubik"),
axis.text.x = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
plot.title = element_text(size =20, face = "bold", hjust = 0.5),
plot.margin = margin(5,5,5,5))
喜欢的小伙伴欢迎关注我的公众号
R语言数据分析指南,持续分享数据可视化的经典案例及一些生信知识,希望对大家有所帮助
网友评论