美文网首页Pytorch
【Pytorch教程】Pytorch tutorials 04-

【Pytorch教程】Pytorch tutorials 04-

作者: Rooooyy | 来源:发表于2020-01-21 22:24 被阅读0次

    Training a classifier

    本篇文章是本人对Pytorch官方教程的原创翻译(原文链接)仅供学习交流使用,转载请注明出处!

    现在我们已经掌握了如何去定义神经网络、计算误差、更新权重。但在前面的章节中,我们用到的数据集都是自己构造的虚拟数据,那么如何真正地处理数据呢?

    通常,我们处理图像、文本、音频、视频等数据时,可以使用一些Python的标准库,将输入导入为numpy格式,然后我们将导入的numpy数组转化为tensor。

    • 处理图像数据,用PillowOpenCV
    • 处理音频,用scipylibrosa
    • 处理文本,既可以使用Python/Cython的原生方法,也可以使用NLTKSpacy

    pytorch为计算机视觉任务特别提供了一个torchvision包,内含Imagenet、CIFAR10、MNIST等常用数据集,以及数据集的转换器。他们分别包含在torchvision.datasetstorch.utils.data.DataLoader中。这就极大地避免了编写大量重复的代码。

    本篇教程会使用CIFAR10数据集。它由10类图片组成,每张图片都是32x32,3通道像素。

    Training an image classifier

    创建一个图像分类器共需5个步骤:

    1. torchvision加载CIFAR10数据集并标准化。
    2. 定义一个卷积神经网络
    3. 定义损失函数
    4. 用训练集训练网络
    5. 用测试集测试网络

    步骤1 加载CIFAR10数据集并标准化。

    import torch
    import torchvision
    import torchvision.transforms as transforms
    

    torchvision.datasets提供的图像是PILImage,像素在[0, 1] 区间,我们需要将其标准化,得到的是[-1, 1]的数据。

    transform = transforms.Compose([transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])  # (样本-均值) / 标准差, 需要分别指定3个通道的均值和标注差
    
    '''
    加载训练集
    root:数据集根目录
    train:是否为训练集
    download:是否需要下载
    transform:transform对象,对数据集进行转换
    '''
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
    # shuffle:是否打乱 num_workers: 多线程数量 如果在windows下报错请改为0
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
    
    # 加载测试集,与上面同理
    testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
    
    classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    
    Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
    Extracting ./data/cifar-10-python.tar.gz to ./data
    Files already downloaded and verified
    
    import matplotlib.pyplot as plt
    import numpy as np
    
    def imshow(img):
        img = img / 2 + 0.5
        npimg = img.numpy()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))  # 原始数据是PILimage,BGR格式,plot只能显示RGB格式,必须要转置
        plt.show()
    
    # 用迭代器来访问数据,一次访问的数据量是一个batch
    dataiter = iter(trainloader)
    images, labels = dataiter.next()
    
    imshow(torchvision.utils.make_grid(images))  # make_grid用于给图像加上边框
    print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
    
    horse   car   dog plane
    

    步骤2 定义神经网络

    前面的章节我们已经定义过神经网络了,直接将代码复用,修改为输入3通道即可。

    import torch
    import torch.nn as nn
    import torch.nn.functional as F  # nn.functional提供了各种激励函数
    
    class Net(nn.Module):
        
        def __init__(self):
            super(Net, self).__init__()
            # 这里将输入通道改为3
            self.conv1 = nn.Conv2d(3, 6, 5)
            self.conv2 = nn.Conv2d(6, 16, 5)
            
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
        
        def forward(self, x):
            x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
            x = F.max_pool2d(F.relu(self.conv2(x)), 2)
            
            x = x.view(-1, 16 * 5 * 5)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            
            return x
    
    net = Net()
    

    步骤3 误差计算和参数更新

    import torch.optim as optim
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)  # momentum表示动量, 一般设为0.9,带动量的梯度下降法收敛更快
    

    步骤4 训练神经网络

    for epoch in range(2):  # epoch表示在整个数据集上循环训练的次数
        
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):  #enumerate()将会给可迭代对象的元素标上序号,返回(序号, 元素)
            # 这里的data是以batch为单位的
            inputs, labels = data  # data的特征和标签分开
            
            # 清空梯度
            optimizer.zero_grad()
            
            # 处理输入、计算误差、更新权重
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            # 做一些统计
            running_loss += loss.item()  # loss是 1x1的Tenor,可以用item直接访问数据
            if i % 2000 == 1999:  # 每2000batch输出一次
                print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0
    
    print('Finished Training.')
    
    [1,  2000] loss: 2.271
    [1,  4000] loss: 1.946
    [1,  6000] loss: 1.725
    [1,  8000] loss: 1.598
    [1, 10000] loss: 1.535
    [1, 12000] loss: 1.477
    [2,  2000] loss: 1.411
    [2,  4000] loss: 1.389
    [2,  6000] loss: 1.359
    [2,  8000] loss: 1.340
    [2, 10000] loss: 1.307
    [2, 12000] loss: 1.280
    Finished Training.
    

    训练完成后,要记得保存训练好的模型:

    PATH = './cifar_net.pth'
    torch.save(net.state_dict(), PATH)
    

    步骤5 测试神经网络

    我们已经用数据集对神经网络训练了2遍,接下来要检验一下神经网络是否学到了东西。

    检验的方法就是让神经网络再产生一些输出,并且和它们的标签做比对。

    首先我们来看一组图片的标签:

    dataiter = iter(testloader)
    images, labels = dataiter.next()
    
    imshow(torchvision.utils.make_grid(images))
    print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
    
    GroundTruth:    cat  ship  ship plane
    

    接下来我们导入保存好的模型,看看模型认为这些图片是什么。模型的输出是图片的“能量”,能量共有10个值,分别表示这场图片属于对应类别的可能性,能量越大,代表我们的分类器认为图片越属于一个类。

    net = Net()
    net.load_state_dict(torch.load(PATH))
    
    outputs = net(images)
    # torch.max不仅可以返回最大值,还可以返回最大值的索引(第二个返回值),我们不需要知道能量的具体值,只需要知道图片归属哪一类即可,最大能量对应的索引即是它被归为的类
    _, predicted = torch.max(outputs, 1)  
    
    print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
    
    Predicted:    cat  ship  ship  ship
    

    结果还算不错,接下来我们把网络应用到完整数据集上试一试:

    correct = 0 
    total = 0
    with torch.no_grad():
        for data in testloader:
            images,labels = data
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    
    print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))     
    
    Accuracy of the network on the 10000 test images: 55 %
    

    再按类别做一次统计,看一看我们的网络的优势和短板是什么:

    class_correct = list(0. for i in range(10))
    class_total = list(0. for i in range(10))
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = net(images)
            _, predicted = torch.max(outputs, 1)
            c = (predicted == labels).squeeze()
            for i in range(4):
                label = labels[i]
                class_correct[label] += c[i].item()
                class_total[label] += 1
    
    
    for i in range(10):
        print('Accuracy of %5s : %2d %%' % (
            classes[i], 100 * class_correct[i] / class_total[i]))
    
    Accuracy of plane : 70 %
    Accuracy of   car : 67 %
    Accuracy of  bird : 34 %
    Accuracy of   cat : 43 %
    Accuracy of  deer : 52 %
    Accuracy of   dog : 52 %
    Accuracy of  frog : 67 %
    Accuracy of horse : 58 %
    Accuracy of  ship : 60 %
    Accuracy of truck : 51 %
    

    Training on GPU

    在GPU上进行训练也非常简单,怎么把Tensor转到GPU,就怎么把网络转到GPU:

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    print(device)
    
    cuda:0
    

    接下来我们直接使用net.to(device)即可把网络迁移到GPU上,程序会自动识别所有的参数,将他们转化为CUDA Tensor。

    需要注意的是,我们必须把输入的数据和标签也都迁移至GPU:

    inputs, labels = data[0].to(device), data[1].to(device)
    

    至此,Pytorch tutorial篇已经完结,官方原版第5篇教程Optional: Data Parallelism为可选部分,不再另行翻译。

    相关文章

      网友评论

        本文标题:【Pytorch教程】Pytorch tutorials 04-

        本文链接:https://www.haomeiwen.com/subject/ruhyzctx.html