import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
params = list(net.parameters())
print(len(params))
print(params[0].size())
10
torch.Size([6, 1, 5, 5])
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
tensor([[ 0.0012, -0.0340, -0.0430, -0.0597, 0.0101, 0.0129, 0.0002, 0.1040,
-0.0090, 0.0261]], grad_fn=<ThAddmmBackward>)
net.zero_grad()
out.backward(torch.randn(1, 10))
output = net(input)
target = torch.randn(10)
target = target.view(1,-1)
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
tensor(1.2767, grad_fn=<MseLossBackward>)
print(loss.grad_fn)
print(loss.grad_fn.next_functions[0][0])
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])
<MseLossBackward object at 0x7f75d76c9c88>
<ThAddmmBackward object at 0x7f75d76c9cf8>
<ExpandBackward object at 0x7f75d76c9c88>
net.zero_grad()
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([ 0.0150, 0.0208, -0.0058, 0.0064, 0.0039, -0.0019])
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data*learning_rate)
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.01)
optimizer.zero_grad()
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
网友评论