美文网首页工作生活
(三) neural networks

(三) neural networks

作者: 狼无雨雪 | 来源:发表于2019-07-04 18:58 被阅读0次
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 6, 5)
            self.conv2 = nn.Conv2d(6, 16, 5)
            
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
        
        def forward(self, x):
            x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
            x = F.max_pool2d(F.relu(self.conv2(x)), 2)
            x = x.view(-1, self.num_flat_features(x))
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
        
        def num_flat_features(self, x):
            size = x.size()[1:]
            num_features = 1
            for s in size:
                num_features *= s
            return num_features
    net = Net()
    print(net)
    
    Net(
      (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
      (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
      (fc1): Linear(in_features=400, out_features=120, bias=True)
      (fc2): Linear(in_features=120, out_features=84, bias=True)
      (fc3): Linear(in_features=84, out_features=10, bias=True)
    )
    
    params = list(net.parameters())
    print(len(params))
    print(params[0].size())
    
    10
    torch.Size([6, 1, 5, 5])
    
    input = torch.randn(1, 1, 32, 32)
    out = net(input)
    print(out)
    
    tensor([[ 0.0012, -0.0340, -0.0430, -0.0597,  0.0101,  0.0129,  0.0002,  0.1040,
             -0.0090,  0.0261]], grad_fn=<ThAddmmBackward>)
    
    net.zero_grad()
    out.backward(torch.randn(1, 10))
    
    output = net(input)
    target = torch.randn(10)
    target = target.view(1,-1)
    criterion = nn.MSELoss()
    
    loss = criterion(output, target)
    print(loss)
    
    tensor(1.2767, grad_fn=<MseLossBackward>)
    
    print(loss.grad_fn)
    print(loss.grad_fn.next_functions[0][0])
    print(loss.grad_fn.next_functions[0][0].next_functions[0][0])
    
    <MseLossBackward object at 0x7f75d76c9c88>
    <ThAddmmBackward object at 0x7f75d76c9cf8>
    <ExpandBackward object at 0x7f75d76c9c88>
    
    net.zero_grad()
    print('conv1.bias.grad before backward')
    print(net.conv1.bias.grad)
    
    loss.backward()
    
    print('conv1.bias.grad after backward')
    print(net.conv1.bias.grad)
    
    conv1.bias.grad before backward
    tensor([0., 0., 0., 0., 0., 0.])
    conv1.bias.grad after backward
    tensor([ 0.0150,  0.0208, -0.0058,  0.0064,  0.0039, -0.0019])
    
    learning_rate = 0.01
    for f in net.parameters():
        f.data.sub_(f.grad.data*learning_rate)
    
    import torch.optim as optim
    
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    
    optimizer.zero_grad()
    output = net(input)
    loss = criterion(output, target)
    loss.backward()
    optimizer.step()
    

    相关文章

      网友评论

        本文标题:(三) neural networks

        本文链接:https://www.haomeiwen.com/subject/rwxdhctx.html