美文网首页
数据结构之算法时间复杂度和空间复杂度

数据结构之算法时间复杂度和空间复杂度

作者: 沉淀者 | 来源:发表于2020-03-19 15:48 被阅读0次

一.时间频度

一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T(n)。

二.T(n)简化

1.忽略常数项

结论:
1) T(n)=2n+20 和T(n)=2n 随着 n 变大,执行曲线无限接近, 20 可以忽略
2) 3n+10 和 3n 随着 n 变大,执行曲线无限接近, 10 可以忽略

2.忽略低次项

结论:
1) 2n^2+3n+10 和 2n^2 随着 n 变大, 执行曲线无限接近, 可以忽略 3n+10
2) n^2+5n+20 和 n^2 随着 n 变大,执行曲线无限接近, 可以忽略 5n+20

3.忽略2次方之下的系数(3次方不能忽略)

结论:
1) 随着 n 值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5 和 3 可以忽略。
2) 而 n^3+5n 和 6n^3+4n ,执行曲线分离,说明次方不能忽略。

三、时间复杂度

1.简介

一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n)表示,若有某个辅助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。 记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。

注意:T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的 T(n) 不同,但时间复杂度相同,都为 O(n²)。

2.计算时间复杂度的方法

  • 用常数 1 代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
  • 修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
  • 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

3.常见的时间复杂度

常数阶 O(1)
对数阶 O(log2n)
线性阶 O(n)
线性对数阶 O(nlog2n)
平方阶 O(n^2)
立方阶 O(n^3)
k 次方阶 O(n^k)
指数阶 O(2^n)

说明:

  1. 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) < Ο(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低
  2. 从图中可见,我们应该尽可能避免使用指数阶的算法

4.举例说明
1)常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)

int i=1;
int j=2;
++i;
j++;
int m=i+j;

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

2)对数阶 O(log2n)

int i=1;
while(i<n){
  i=i*2;
}

说明:在while环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) .

3)线性阶 O(n)

for(int i=0;i<n;i++){
  j=i;
  j++;
}

说明:这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

4)线性对数阶 O(nlog2n)

for(int m=0;m<n;m++){
  i=1;
  while(i<n){
    i=i*2;
  }
 }

说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

5) 平方阶 O(n^2)

for(int i=0;i<n;i++){
  for(int j=0;j<n;j++){
      j=i;
      j++;
    }
 }

说明:平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)

四、平均时间复杂度和最坏时间复杂度

平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。

最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。

各种排序算法的复杂度分析

各种排序算法复杂度.png

五、空间复杂度

类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况

注意:在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.

相关文章

  • 算法复杂度

    数据结构: 数组、链表、栈、队列、二叉树、hash表、图。 空间复杂度和时间复杂度的算法 空间复杂度和时间复杂度 ...

  • 数据结构(一)时间复杂度

    简介:如果想对数据结构和算法有基本的了解和认识,那么算法复杂度是前提,算法复杂度包含时间复杂度和空间复杂度,具体概...

  • Python-100天(二)-Python语言进阶

    数据结构和算法 算法:解决问题的方法和步骤 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。 渐近时间复杂度的大O...

  • 数据结构与算法-复杂度分析

    时间、空间复杂度:衡量算法执行小路的指标,数据结构与算法离不开时间、空间复杂度分析,复杂度分析是算法的精髓。 为什...

  • 一位算法工程师的自我修养

    数据结构与算法 基本算法思想动态规划贪心算法回溯算法分治算法枚举算法 算法基础 时间复杂度 空间复杂度 最大复杂度...

  • Python语言进阶

    Python语言进阶 数据结构和算法 算法:解决问题的方法和步骤 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。...

  • 排序算法

    数据结构8种排序时间和空间复杂度对比七大查找算法学了这么多年算法,你还不知道时间复杂度和空间复杂度如何计算吗?排序...

  • 数据结构学习大纲

    第一章 绪论 数据结构基本概念数据结构基本概念算法的基本概念算法的时间复杂度与空间复杂度分析基础时间复杂度分析空间...

  • 数据结构和算法

    01_数据结构和算法绪论.mp4 02_谈谈算法.mp4 03_时间复杂度和空间复杂度.mp4 04_时间复杂度和...

  • 数据结构与算法之线性表

    前言 上一篇《数据结构和算法之时间复杂度和空间复杂度》中介绍了时间复杂度的概念和常见的时间复杂度,并分别举例子进行...

网友评论

      本文标题:数据结构之算法时间复杂度和空间复杂度

      本文链接:https://www.haomeiwen.com/subject/rzklyhtx.html