美文网首页
排序算法

排序算法

作者: John13 | 来源:发表于2018-08-14 11:21 被阅读0次

    数据结构8种排序时间和空间复杂度对比
    七大查找算法
    学了这么多年算法,你还不知道时间复杂度和空间复杂度如何计算吗?
    排序算法上——冒泡排序、插入排序和选择排序 --- 棒棒的!
    九种排序算法的可视化及比较
    【算法】8种排序算法(Java)

    算法动态演示:
    排序算法演示
    Comparison Sorting Algorithms

    1、冒泡排序,稳定
    在冒泡排序时,计算机从右向左遍历数组,比较相邻的两个元素。如果两个元素的顺序是错的,那么sorry,请两位互换。如果两个元素的顺序是正确的,则不做交换。经过一次遍历,我们可以保证最小的元素(泡泡)处于最左边的位置。

    然而,经过这么一趟,冒泡排序不能保证所有的元素已经按照次序排列好。我们需要再次从右向左遍历数组元素,进行冒泡排序。这一次遍历,我们不用考虑最左端的元素,因为该元素已经是最小的。遍历结束后,继续重复扫描…… 总共可能进行n-1次的遍历。

    如果某次遍历过程中,没有发生交换,bingo,这个数组已经排序好,可以中止排序。如果起始时,最大的元素位于最左边,那么冒泡算法必须经过n-1次遍历才能将数组排列好,而不能提前完成排序。


    2、直接插入排序,稳定
    对于起始数组来说,我们认为最初,有一名学生,也就是最左边的元素(i=0),构成一个有序的队伍。

    随后有第二个学生(i=1)加入队伍,第二名学生交换到应在的位置;随后第三个学生加入队伍,第三名学生交换到应在的位置…… 当n个学生都加入队伍时,我们的排序就完成了。


    2.1、二分插入排序(Binary Insertion Sort),稳定
    这是对直接插入排序的改进,由于已排好序的部分是有序的,所以我们就能使用二分查找法确定我们的插入位置,而不是一个个找,除了这点,它跟插入排序没什么区别,差别在于插入位置的确定而已,性能却能因此得到不少改善。

    3、选择排序,不稳定
    先找到起始数组中最小的元素,将它交换到i=0;然后寻找剩下元素中最小的元素,将它交换到i=1的位置…… 直到找到第二大的元素,将它交换到n-2的位置。这时,整个数组的排序完成。

    4、希尔排序(插入排序的一种,是针对直接插入排序算法的改进),不稳定
    我们在冒泡排序中提到,最坏的情况发生在大的元素位于数组的起始。这些位于数组起始的大元素需要多次遍历,才能交换到队尾。这样的元素被称为乌龟(turtle)。

    乌龟元素的原因在于,冒泡排序总是相邻的两个元素比较并交换。所以每次从右向左遍历,大元素只能向右移动一位。(小的元素位于队尾,被称为兔子(rabbit)元素,它们可以很快的交换到队首。)

    希尔排序是以更大的间隔来比较和交换元素,这样,大的元素在交换的时候,可以向右移动不止一个位置,从而更快的移动乌龟元素。比如,可以将数组分为4个子数组(i=4k, i=4k+1, i=4k+2, i=4k+3),对每个子数组进行冒泡排序。比如子数组i=0,4,8,12...。此时,每次交换的间隔为4。

    完成对四个子数组的排序后,数组的顺序并不一定能排列好。希尔排序会不断减小间隔,重新形成子数组,并对子数组冒泡排序…… 当间隔减小为1时,就相当于对整个数组进行了一次冒泡排序。随后,数组的顺序就排列好了。

    希尔排序不止可以配合冒泡排序,还可以配合其他的排序方法完成。

    5、快速排序(对冒泡排序的一种改进),不稳定
    我们依然考虑按照身高给学生排序。在快速排序中,我们随便挑出一个学生,以该学生的身高为参考(pivot)。然后让比该学生低的站在该学生的右边,剩下的站在该学生的左边。

    很明显,所有的学生被分成了两组。该学生右边的学生的身高都大于该学生左边的学生的身高。

    我们继续,在低身高学生组随便挑出一个学生,将低身高组的学生分为两组(很低和不那么低)。同样,将高学生组也分为两组(不那么高和很高)。

    如此继续细分,直到分组中只有一个学生。当所有的分组中都只有一个学生时,则排序完成。


    5.1、改进型快速排序(Improved Quick Sort)
    快速排序的缺点是使用了递归,如果数据量很大,大量的递归调用会不会导致性能下降呢?我想应该会的,所以我打算作这么种优化,考虑到数据量很小的情况下,直接选择排序和快速排序的性能相差无几,那当递归到子数组元素数目小于30的时候,我就是用直接选择排序,这样会不会提高一点性能呢?

    6、堆排序,不稳定
    堆(heap)是常见的数据结构。它是一个有优先级的队列。最常见的堆的实现是一个有限定操作的Complete Binary Tree。这个Complete Binary Tree保持堆的特性,也就是父节点(parent)大于子节点(children)。因此,堆的根节点是所有堆元素中最小的。堆定义有插入节点和删除根节点操作,这两个操作都保持堆的特性。

    我们可以将无序数组构成一个堆,然后不断取出根节点,最终构成一个有序数组。

    7、桶排序(Bucket Sort)

    这是迄今为止最快的一种排序法,其时间复杂度仅为Ο(n),也就是线性复杂度!不可思议吧?但它是有条件的。举个例子:一年的全国高考考生人数为500万,分数使用标准分,最低100,最高900,没有小数,你把这500万元素的数组排个序。我们抓住了这么个非常特殊的条件,就能在毫秒级内完成这500万的排序,那就是:最低100,最高900,没有小数,那一共可出现的分数可能有多少种呢?一共有900-100+1=801,那么多种,想想看,有没有什么“投机取巧”的办法?方法就是创建801个“桶”,从头到尾遍历一次数组,对不同的分数给不同的“桶”加料,比如有个考生考了500分,那么就给500分的那个桶(下标为500-100)加1,完成后遍历一下这个桶数组,按照桶值,填充原数组,100分的有1000人,于是从0填到999,都填1000,101分的有1200人,于是从1000到2019,都填入101……如图:


    很显然,如果分数不是从100到900的整数,而是从0到2亿,那就要分配2亿个桶了,这是不可能的,所以桶排序有其局限性,适合元素值集合并不大的情况。

    7.1、基数排序,稳定

    基数排序是对桶排序的一种改进,这种改进是让“桶排序”适合于更大的元素值集合的情况,而不是提高性能。它的思想是这样的,比如数值的集合是8位整数,我们很难创建一亿个桶,于是我们先对这些数的个位进行类似桶排序的排序(下文且称作“类桶排序”吧),然后再对这些数的十位进行类桶排序,再就是百位……一共做8次,当然,我说的是思路,实际上我们通常并不这么干,因为C++的位移运算速度是比较快,所以我们通常以“字节”为单位进行桶排序。但下图为了画图方便,我是以半字节(4
    bit)为单位进行类桶排序的,因为字节为单位进行桶排得画256个桶,有点难画,如图:


    8、归并排序,稳定

    其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。

    总结

    相关文章

      网友评论

          本文标题:排序算法

          本文链接:https://www.haomeiwen.com/subject/ijjkbftx.html