美文网首页
一些插值函数 easy

一些插值函数 easy

作者: 百思不得Ting姐 | 来源:发表于2019-07-09 14:34 被阅读0次

全部来源网络,如果侵权请联系

/* ============================================================

jQuery.easing['jswing'] = jQuery.easing['swing'];

jQuery.extend( jQuery.easing,
{
// t: current time, b: begInnIng value, c: change In value, d: duration

def: 'easeOutQuad',
swing: function (x, t, b, c, d) {
    //alert(jQuery.easing.default);
    return jQuery.easing[jQuery.easing.def](x, t, b, c, d);
},
easeInQuad: function (x, t, b, c, d) {
    return c*(t/=d)*t + b;
},
easeOutQuad: function (x, t, b, c, d) {
    return -c *(t/=d)*(t-2) + b;
},
easeInOutQuad: function (x, t, b, c, d) {
    if ((t/=d/2) < 1) return c/2*t*t + b;
    return -c/2 * ((--t)*(t-2) - 1) + b;
},
easeInCubic: function (x, t, b, c, d) {
    return c*(t/=d)*t*t + b;
},
easeOutCubic: function (x, t, b, c, d) {
    return c*((t=t/d-1)*t*t + 1) + b;
},
easeInOutCubic: function (x, t, b, c, d) {
    if ((t/=d/2) < 1) return c/2*t*t*t + b;
    return c/2*((t-=2)*t*t + 2) + b;
},
easeInQuart: function (x, t, b, c, d) {
    return c*(t/=d)*t*t*t + b;
},
easeOutQuart: function (x, t, b, c, d) {
    return -c * ((t=t/d-1)*t*t*t - 1) + b;
},
easeInOutQuart: function (x, t, b, c, d) {
    if ((t/=d/2) < 1) return c/2*t*t*t*t + b;
    return -c/2 * ((t-=2)*t*t*t - 2) + b;
},
easeInQuint: function (x, t, b, c, d) {
    return c*(t/=d)*t*t*t*t + b;
},
easeOutQuint: function (x, t, b, c, d) {
    return c*((t=t/d-1)*t*t*t*t + 1) + b;
},
easeInOutQuint: function (x, t, b, c, d) {
    if ((t/=d/2) < 1) return c/2*t*t*t*t*t + b;
    return c/2*((t-=2)*t*t*t*t + 2) + b;
},
easeInSine: function (x, t, b, c, d) {
    return -c * Math.cos(t/d * (Math.PI/2)) + c + b;
},
easeOutSine: function (x, t, b, c, d) {
    return c * Math.sin(t/d * (Math.PI/2)) + b;
},
easeInOutSine: function (x, t, b, c, d) {
    return -c/2 * (Math.cos(Math.PI*t/d) - 1) + b;
},
easeInExpo: function (x, t, b, c, d) {
    return (t==0) ? b : c * Math.pow(2, 10 * (t/d - 1)) + b;
},
easeOutExpo: function (x, t, b, c, d) {
    return (t==d) ? b+c : c * (-Math.pow(2, -10 * t/d) + 1) + b;
},
easeInOutExpo: function (x, t, b, c, d) {
    if (t==0) return b;
    if (t==d) return b+c;
    if ((t/=d/2) < 1) return c/2 * Math.pow(2, 10 * (t - 1)) + b;
    return c/2 * (-Math.pow(2, -10 * --t) + 2) + b;
},
easeInCirc: function (x, t, b, c, d) {
    return -c * (Math.sqrt(1 - (t/=d)*t) - 1) + b;
},
easeOutCirc: function (x, t, b, c, d) {
    return c * Math.sqrt(1 - (t=t/d-1)*t) + b;
},
easeInOutCirc: function (x, t, b, c, d) {
    if ((t/=d/2) < 1) return -c/2 * (Math.sqrt(1 - t*t) - 1) + b;
    return c/2 * (Math.sqrt(1 - (t-=2)*t) + 1) + b;
},
easeInElastic: function (x, t, b, c, d) {
    var s=1.70158;var p=0;var a=c;
    if (t==0) return b;  if ((t/=d)==1) return b+c;  if (!p) p=d*.3;
    if (a < Math.abs(c)) { a=c; var s=p/4; }
    else var s = p/(2*Math.PI) * Math.asin (c/a);
    return -(a*Math.pow(2,10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )) + b;
},
easeOutElastic: function (x, t, b, c, d) {
    var s=1.70158;var p=0;var a=c;
    if (t==0) return b;  if ((t/=d)==1) return b+c;  if (!p) p=d*.3;
    if (a < Math.abs(c)) { a=c; var s=p/4; }
    else var s = p/(2*Math.PI) * Math.asin (c/a);
    return a*Math.pow(2,-10*t) * Math.sin( (t*d-s)*(2*Math.PI)/p ) + c + b;
},
easeInOutElastic: function (x, t, b, c, d) {
    var s=1.70158;var p=0;var a=c;
    if (t==0) return b;  if ((t/=d/2)==2) return b+c;  if (!p) p=d*(.3*1.5);
    if (a < Math.abs(c)) { a=c; var s=p/4; }
    else var s = p/(2*Math.PI) * Math.asin (c/a);
    if (t < 1) return -.5*(a*Math.pow(2,10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )) + b;
    return a*Math.pow(2,-10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )*.5 + c + b;
},
easeInBack: function (x, t, b, c, d, s) {
    if (s == undefined) s = 1.70158;
    return c*(t/=d)*t*((s+1)*t - s) + b;
},
easeOutBack: function (x, t, b, c, d, s) {
    if (s == undefined) s = 1.70158;
    return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
},
easeInOutBack: function (x, t, b, c, d, s) {
    if (s == undefined) s = 1.70158; 
    if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525))+1)*t - s)) + b;
    return c/2*((t-=2)*t*(((s*=(1.525))+1)*t + s) + 2) + b;
},
easeInBounce: function (x, t, b, c, d) {
    return c - jQuery.easing.easeOutBounce (x, d-t, 0, c, d) + b;
},
easeOutBounce: function (x, t, b, c, d) {
    if ((t/=d) < (1/2.75)) {
        return c*(7.5625*t*t) + b;
    } else if (t < (2/2.75)) {
        return c*(7.5625*(t-=(1.5/2.75))*t + .75) + b;
    } else if (t < (2.5/2.75)) {
        return c*(7.5625*(t-=(2.25/2.75))*t + .9375) + b;
    } else {
        return c*(7.5625*(t-=(2.625/2.75))*t + .984375) + b;
    }
},
easeInOutBounce: function (x, t, b, c, d) {
    if (t < d/2) return jQuery.easing.easeInBounce (x, t*2, 0, c, d) * .5 + b;
    return jQuery.easing.easeOutBounce (x, t*2-d, 0, c, d) * .5 + c*.5 + b;
}

});

/*

  • TERMS OF USE - EASING EQUATIONS
  • Open source under the BSD License.
  • Copyright © 2001 Robert Penner
  • All rights reserved.
  • Redistribution and use in source and binary forms, with or without modification,
  • are permitted provided that the following conditions are met:
  • Redistributions of source code must retain the above copyright notice, this list of
  • conditions and the following disclaimer.
  • Redistributions in binary form must reproduce the above copyright notice, this list
  • of conditions and the following disclaimer in the documentation and/or other materials
  • provided with the distribution.
  • Neither the name of the author nor the names of contributors may be used to endorse
  • or promote products derived from this software without specific prior written permission.
  • THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
  • EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  • MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  • COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  • EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  • GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
  • AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  • NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  • OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*

  • Easing Functions - inspired from http://gizma.com/easing/
  • only considering the t value for the range [0, 1] => [0, 1]
    /
    EasingFunctions = {
    // no easing, no acceleration
    linear: function (t) { return t },
    // accelerating from zero velocity
    easeInQuad: function (t) { return t
    t },
    // decelerating to zero velocity
    easeOutQuad: function (t) { return t(2-t) },
    // acceleration until halfway, then deceleration
    easeInOutQuad: function (t) { return t<.5 ? 2
    tt : -1+(4-2t)t },
    // accelerating from zero velocity
    easeInCubic: function (t) { return t
    tt },
    // decelerating to zero velocity
    easeOutCubic: function (t) { return (--t)
    tt+1 },
    // acceleration until halfway, then deceleration
    easeInOutCubic: function (t) { return t<.5 ? 4
    ttt : (t-1)(2t-2)(2t-2)+1 },
    // accelerating from zero velocity
    easeInQuart: function (t) { return tttt },
    // decelerating to zero velocity
    easeOutQuart: function (t) { return 1-(--t)
    ttt },
    // acceleration until halfway, then deceleration
    easeInOutQuart: function (t) { return t<.5 ? 8tttt : 1-8(--t)ttt },
    // accelerating from zero velocity
    easeInQuint: function (t) { return ttttt },
    // decelerating to zero velocity
    easeOutQuint: function (t) { return 1+(--t)tttt },
    // acceleration until halfway, then deceleration
    easeInOutQuint: function (t) { return t<.5 ? 16ttttt : 1+16(--t)tttt }
    }

https://github.com/gre/bezier-easing

相关文章

  • 一些插值函数 easy

    全部来源网络,如果侵权请联系 /* =======================================...

  • 数值分析之插值

    插值 一.基本概念 1.1插值需要研究的问题 插值函数是否存在? 如何构造插值函数? 如何评估误差? 1.2插值法...

  • 数值分析:插值与拟合

    1 插值 定义 设函数在区间上的个点,上的函数值为,若粗在函数,使成立,则称函数为的 插值函数,称为被插值函数,点...

  • 【数学建模算法】(26)插值和拟合:埃尔米特(Hermite)插

    1.埃尔米特(Hermite)插值 1.1.Hermite插值多项式 如果对插值函数,不仅要求它在节点处与函数同值...

  • 插值

    一维插值 插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格...

  • Lagrange插值算法

    本章涉及知识点1、插值问题的定义2、插值基函数3、Lagrange插值多项式4、Lagrange线性插值5、Lag...

  • 基础练习

    字符串创建数字矩阵 numpy数组创建数字矩阵 插值函数插值可通过函数在有限个点处的取值状况,估算出函数在其他点处...

  • 插值与多项式逼近

    插值与多项式逼近 关于插值,是利用已知函数上的点及其函数值,对某一点求函数值。数学图像上,表现为两个函数形状的相似...

  • 05-隐式转换

    高阶函数 算子/函数/API File 模式匹配 老师 异常捕获 偏函数 其他函数 currying 字符串插值 ...

  • 算法调优记录

    1.双线性插值 2.平方插值 3.分段函数插值法 针对上述对应关系,n=6,8,10时,k,a组合方针效果最好说明...

网友评论

      本文标题:一些插值函数 easy

      本文链接:https://www.haomeiwen.com/subject/sabfnqtx.html