美文网首页
十二. java数据结构 - 二叉树

十二. java数据结构 - 二叉树

作者: 21号新秀_邓肯 | 来源:发表于2021-05-06 09:59 被阅读0次

    1.二叉树的概念

    1. 树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。

    2. 二叉树的子节点分为左节点和右节点

    3. 示意图

    二叉树
    1. 如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n-1 , n 为层数,则我们称为满二叉树。
    满二叉树
    1. 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树
    完全二叉树

    2.二叉树遍历的说明

    使用前序,中序和后序对下面的二叉树进行遍历.

      1. 前序遍历: 先输出父节点,再遍历左子树和右子树
      1. 中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
      1. 后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点
      1. 小结: 看输出父节点的顺序,就确定是前序,中序还是后序
    二叉树遍历

    2.先创建HeroNode 结点

    class HeroNode {
        private int no;
        private String name;
        private HeroNode left; //默认null
        private HeroNode right; //默认null
        public HeroNode(int no, String name) {
            this.no = no;
            this.name = name;
        }
        public int getNo() {
            return no;
        }
        public void setNo(int no) {
            this.no = no;
        }
        public String getName() {
            return name;
        }
        public void setName(String name) {
            this.name = name;
        }
        public HeroNode getLeft() {
            return left;
        }
        public void setLeft(HeroNode left) {
            this.left = left;
        }
        public HeroNode getRight() {
            return right;
        }
        public void setRight(HeroNode right) {
            this.right = right;
        }
        @Override
        public String toString() {
            return "HeroNode [no=" + no + ", name=" + name + "]";
        }
        
        //编写前序遍历的方法
        public void preOrder() {
            System.out.println(this); //先输出父结点
            //递归向左子树前序遍历
            if(this.left != null) {
                this.left.preOrder();
            }
            //递归向右子树前序遍历
            if(this.right != null) {
                this.right.preOrder();
            }
        }
        //中序遍历
        public void infixOrder() {
            
            //递归向左子树中序遍历
            if(this.left != null) {
                this.left.infixOrder();
            }
            //输出父结点
            System.out.println(this);
            //递归向右子树中序遍历
            if(this.right != null) {
                this.right.infixOrder();
            }
        }
        //后序遍历
        public void postOrder() {
            if(this.left != null) {
                this.left.postOrder();
            }
            if(this.right != null) {
                this.right.postOrder();
            }
            System.out.println(this);
        }
        
        
    }
    

    3. 二叉树查找指定节点

    1. 请编写前序查找,中序查找和后序查找的方法。

    2. 并分别使用三种查找方式,查找 heroNO = 5 的节点

    3. 并分析各种查找方式,分别比较了多少次

    4. 思路分析图解

    查找指定节点思路

    代码实现

    1.先创建HeroNode 结点

    class HeroNode {
        private int no;
        private String name;
        private HeroNode left; //默认null
        private HeroNode right; //默认null
        public HeroNode(int no, String name) {
            this.no = no;
            this.name = name;
        }
        public int getNo() {
            return no;
        }
        public void setNo(int no) {
            this.no = no;
        }
        public String getName() {
            return name;
        }
        public void setName(String name) {
            this.name = name;
        }
        public HeroNode getLeft() {
            return left;
        }
        public void setLeft(HeroNode left) {
            this.left = left;
        }
        public HeroNode getRight() {
            return right;
        }
        public void setRight(HeroNode right) {
            this.right = right;
        }
        @Override
        public String toString() {
            return "HeroNode [no=" + no + ", name=" + name + "]";
        }
        
    
        //前序遍历查找
        /**
         * 
         * @param no 查找no
         * @return 如果找到就返回该Node ,如果没有找到返回 null
         */
        public HeroNode preOrderSearch(int no) {
            System.out.println("进入前序遍历");
            //比较当前结点是不是
            if(this.no == no) {
                return this;
            }
            //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
            //2.如果左递归前序查找,找到结点,则返回
            HeroNode resNode = null;
            if(this.left != null) {
                resNode = this.left.preOrderSearch(no);
            }
            if(resNode != null) {//说明我们左子树找到
                return resNode;
            }
            //1.左递归前序查找,找到结点,则返回,否继续判断,
            //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
            if(this.right != null) {
                resNode = this.right.preOrderSearch(no);
            }
            return resNode;
        }
        
        //中序遍历查找
        public HeroNode infixOrderSearch(int no) {
            //判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
            HeroNode resNode = null;
            if(this.left != null) {
                resNode = this.left.infixOrderSearch(no);
            }
            if(resNode != null) {
                return resNode;
            }
            System.out.println("进入中序查找");
            //如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
            if(this.no == no) {
                return this;
            }
            //否则继续进行右递归的中序查找
            if(this.right != null) {
                resNode = this.right.infixOrderSearch(no);
            }
            return resNode;
            
        }
        
        //后序遍历查找
        public HeroNode postOrderSearch(int no) {
            
            //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
            HeroNode resNode = null;
            if(this.left != null) {
                resNode = this.left.postOrderSearch(no);
            }
            if(resNode != null) {//说明在左子树找到
                return resNode;
            }
            
            //如果左子树没有找到,则向右子树递归进行后序遍历查找
            if(this.right != null) {
                resNode = this.right.postOrderSearch(no);
            }
            if(resNode != null) {
                return resNode;
            }
            System.out.println("进入后序查找");
            //如果左右子树都没有找到,就比较当前结点是不是
            if(this.no == no) {
                return this;
            }
            return resNode;
        }
        
    }
    

    二叉树删除指定节点

    1.要求

    1. 如果删除的节点是叶子节点,则删除该节点

    2. 如果删除的节点是非叶子节点,则删除该子树.

    3. 测试,删除掉 5 号叶子节点 和 3 号子树.

    4. 完成删除思路分析

    image.png

    2.代码

    1.HeroNode

        //递归删除结点
        //1.如果删除的节点是叶子节点,则删除该节点
        //2.如果删除的节点是非叶子节点,则删除该子树
        public void delNode(int no) {
            
            //思路
            /*
             *  1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
                2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
                3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
                4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
                5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.
    
             */
            //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
            if(this.left != null && this.left.no == no) {
                this.left = null;
                return;
            }
            //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
            if(this.right != null && this.right.no == no) {
                this.right = null;
                return;
            }
            //4.我们就需要向左子树进行递归删除
            if(this.left != null) {
                this.left.delNode(no);
            }
            //5.则应当向右子树进行递归删除
            if(this.right != null) {
                this.right.delNode(no);
            }
        }
    

    2.定义BinaryTree 二叉树

    class BinaryTree {
        private HeroNode root;
    
        public void setRoot(HeroNode root) {
            this.root = root;
        }
        
        //删除结点
        public void delNode(int no) {
            if(root != null) {
                //如果只有一个root结点, 这里立即判断root是不是就是要删除结点
                if(root.getNo() == no) {
                    root = null;
                } else {
                    //递归删除
                    root.delNode(no);
                }
            }else{
                System.out.println("空树,不能删除~");
            }
        }
        //前序遍历
        public void preOrder() {
            if(this.root != null) {
                this.root.preOrder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
        
        //中序遍历
        public void infixOrder() {
            if(this.root != null) {
                this.root.infixOrder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
        //后序遍历
        public void postOrder() {
            if(this.root != null) {
                this.root.postOrder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
        
        //前序遍历
        public HeroNode preOrderSearch(int no) {
            if(root != null) {
                return root.preOrderSearch(no);
            } else {
                return null;
            }
        }
        //中序遍历
        public HeroNode infixOrderSearch(int no) {
            if(root != null) {
                return root.infixOrderSearch(no);
            }else {
                return null;
            }
        }
        //后序遍历
        public HeroNode postOrderSearch(int no) {
            if(root != null) {
                return this.root.postOrderSearch(no);
            }else {
                return null;
            }
        }
    }
    

    测试

    public static void main(String[] args) {
            //先需要创建一颗二叉树
            BinaryTree binaryTree = new BinaryTree();
            //创建需要的结点
            HeroNode root = new HeroNode(1, "宋江");
            HeroNode node2 = new HeroNode(2, "吴用");
            HeroNode node3 = new HeroNode(3, "卢俊义");
            HeroNode node4 = new HeroNode(4, "林冲");
            HeroNode node5 = new HeroNode(5, "关胜");
            
            //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
            root.setLeft(node2);
            root.setRight(node3);
            node3.setRight(node4);
            node3.setLeft(node5);
            binaryTree.setRoot(root);
            
            //测试
    //      System.out.println("前序遍历"); // 1,2,3,5,4
    //      binaryTree.preOrder();
            
            //测试 
    //      System.out.println("中序遍历");
    //      binaryTree.infixOrder(); // 2,1,5,3,4
    //      
    //      System.out.println("后序遍历");
    //      binaryTree.postOrder(); // 2,5,4,3,1
            
            //前序遍历
            //前序遍历的次数 :4 
    //      System.out.println("前序遍历方式~~~");
    //      HeroNode resNode = binaryTree.preOrderSearch(5);
    //      if (resNode != null) {
    //          System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
    //      } else {
    //          System.out.printf("没有找到 no = %d 的英雄", 5);
    //      }
            
            //中序遍历查找
            //中序遍历3次
    //      System.out.println("中序遍历方式~~~");
    //      HeroNode resNode = binaryTree.infixOrderSearch(5);
    //      if (resNode != null) {
    //          System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
    //      } else {
    //          System.out.printf("没有找到 no = %d 的英雄", 5);
    //      }
            
            //后序遍历查找
            //后序遍历查找的次数  2次
    //      System.out.println("后序遍历方式~~~");
    //      HeroNode resNode = binaryTree.postOrderSearch(5);
    //      if (resNode != null) {
    //          System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
    //      } else {
    //          System.out.printf("没有找到 no = %d 的英雄", 5);
    //      }
            
            //测试一把删除结点
            
            System.out.println("删除前,前序遍历");
            binaryTree.preOrder(); //  1,2,3,5,4
            binaryTree.delNode(5);
            //binaryTree.delNode(3);
            System.out.println("删除后,前序遍历");
            binaryTree.preOrder(); // 1,2,3,4
            
            
            
        }
    

    相关文章

      网友评论

          本文标题:十二. java数据结构 - 二叉树

          本文链接:https://www.haomeiwen.com/subject/scmqfhtx.html