Yes, it is as you guessed. The JVM/JRE uses Java bytecode as its instruction set and each JVM needs to be compiled on and be runnable on the native/local hardware (and therefore the local instruction set). This diagram from Wikipedia illustrates this well I think:
The JRE/JVM needs to be compiled for the specific hardware it runs on, though the Java bytecode definitions and interpretations by the JVM itself stay the same. As you point out, the Java bytecode can be seen as a kind of abstraction layer between the Java source code and the local machine/binary code. It does allow for a separation of concerns between the typical Java programmer and needing to know anything machine-specific, as almost all of that is handled by the JVM/JRE.
cafe babe 0000 0032 0022 0a00 0600 1409
0015 0016 0800 170a 0018 0019 0700 1a07
001b 0100 063c 696e 6974 3e01 0003 2829
5601 0004 436f 6465 0100 0f4c 696e 654e
756d 6265 7254 6162 6c65 0100 124c 6f63
616c 5661 7269 6162 6c65 5461 626c 6501
0004 7468 6973 0100 0c4c 4865 6c6c 6f57
6f72 6c64 3b01 0004 6d61 696e 0100 1628
5b4c 6a61 7661 2f6c 616e 672f 5374 7269
6e67 3b29 5601 0004 6172 6773 0100 135b
4c6a 6176 612f 6c61 6e67 2f53 7472 696e
673b 0100 0a53 6f75 7263 6546 696c 6501
000f 4865 6c6c 6f57 6f72 6c64 2e6a 6176
610c 0007 0008 0700 1c0c 001d 001e 0100
0b48 656c 6c6f 2c57 6f72 6c64 0700 1f0c
0020 0021 0100 0a48 656c 6c6f 576f 726c
6401 0010 6a61 7661 2f6c 616e 672f 4f62
6a65 6374 0100 106a 6176 612f 6c61 6e67
2f53 7973 7465 6d01 0003 6f75 7401 0015
4c6a 6176 612f 696f 2f50 7269 6e74 5374
7265 616d 3b01 0013 6a61 7661 2f69 6f2f
5072 696e 7453 7472 6561 6d01 0007 7072
696e 746c 6e01 0015 284c 6a61 7661 2f6c
616e 672f 5374 7269 6e67 3b29 5600 2100
0500 0600 0000 0000 0200 0100 0700 0800
0100 0900 0000 2f00 0100 0100 0000 052a
b700 01b1 0000 0002 000a 0000 0006 0001
0000 0007 000b 0000 000c 0001 0000 0005
000c 000d 0000 0009 000e 000f 0001 0009
0000 0037 0002 0001 0000 0009 b200 0212
03b6 0004 b100 0000 0200 0a00 0000 0a00
0200 0000 0900 0800 0a00 0b00 0000 0c00
0100 0000 0900 1000 1100 0000 0100 1200
0000 0200 13
$ javap -c HelloWorld.class
Compiled from "HelloWorld.java"
public class HelloWorld {
public HelloWorld();
Code:
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
public static void main(java.lang.String[]);
Code:
0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3 // String Hello,World
5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
8: return
}
指令码 | 助记符 | 说明 |
---|---|---|
0×00 | nop | 什么都不做 |
0×01 | aconst_null | 将null推送至栈顶 |
0×02 | iconst_m1 | 将int型-1推送至栈顶 |
0×03 | iconst_0 | 将int型0推送至栈顶 |
0×04
iconst_1
将int型1推送至栈顶
0×05
iconst_2
将int型2推送至栈顶
0×06
iconst_3
将int型3推送至栈顶
0×07
iconst_4
将int型4推送至栈顶
0×08
iconst_5
将int型5推送至栈顶
0×09
lconst_0
将long型0推送至栈顶
0x0a
lconst_1
将long型1推送至栈顶
0x0b
fconst_0
将float型0推送至栈顶
0x0c
fconst_1
将float型1推送至栈顶
0x0d
fconst_2
将float型2推送至栈顶
0x0e
dconst_0
将double型0推送至栈顶
0x0f
dconst_1
将double型1推送至栈顶
0×10
bipush
将单字节的常量值(-128~127)推送至栈顶
0×11
sipush
将一个短整型常量值(-32768~32767)推送至栈顶
0×12
ldc
将int, float或String型常量值从常量池中推送至栈顶
0×13
ldc_w
将int, float或String型常量值从常量池中推送至栈顶(宽索引)
0×14
ldc2_w
将long或double型常量值从常量池中推送至栈顶(宽索引)
0×15
iload
将指定的int型本地变量推送至栈顶
0×16
lload
将指定的long型本地变量推送至栈顶
0×17
fload
将指定的float型本地变量推送至栈顶
0×18
dload
将指定的double型本地变量推送至栈顶
0×19
aload
将指定的引用类型本地变量推送至栈顶
0x1a
iload_0
将第0个int型本地变量推送至栈顶
0x1b
iload_1
将第1个int型本地变量推送至栈顶
0x1c
iload_2
将第2个int型本地变量推送至栈顶
0x1d
iload_3
将第3个int型本地变量推送至栈顶
0x1e
lload_0
将第0个long型本地变量推送至栈顶
0x1f
lload_1
将第1个long型本地变量推送至栈顶
0×20
lload_2
将第2个long型本地变量推送至栈顶
0×21
lload_3
将第3个long型本地变量推送至栈顶
0×22
fload_0
将第0个float型本地变量推送至栈顶
0×23
fload_1
将第1个float型本地变量推送至栈顶
0×24
fload_2
将第2个float型本地变量推送至栈顶
0×25
fload_3
将第3个float型本地变量推送至栈顶
0×26
dload_0
将第0个double型本地变量推送至栈顶
0×27
dload_1
将第1个double型本地变量推送至栈顶
0×28
dload_2
将第2个double型本地变量推送至栈顶
0×29
dload_3
将第3个double型本地变量推送至栈顶
0x2a
aload_0
将第0个引用类型本地变量推送至栈顶
0x2b
aload_1
将第1个引用类型本地变量推送至栈顶
0x2c
aload_2
将第2个引用类型本地变量推送至栈顶
0x2d
aload_3
将第3个引用类型本地变量推送至栈顶
0x2e
iaload
将int型数组指定索引的值推送至栈顶
0x2f
laload
将long型数组指定索引的值推送至栈顶
0×30
faload
将float型数组指定索引的值推送至栈顶
0×31
daload
将double型数组指定索引的值推送至栈顶
0×32
aaload
将引用型数组指定索引的值推送至栈顶
0×33
baload
将boolean或byte型数组指定索引的值推送至栈顶
0×34
caload
将char型数组指定索引的值推送至栈顶
0×35
saload
将short型数组指定索引的值推送至栈顶
0×36
istore
将栈顶int型数值存入指定本地变量
0×37
lstore
将栈顶long型数值存入指定本地变量
0×38
fstore
将栈顶float型数值存入指定本地变量
0×39
dstore
将栈顶double型数值存入指定本地变量
0x3a
astore
将栈顶引用型数值存入指定本地变量
0x3b
istore_0
将栈顶int型数值存入第0个本地变量
0x3c
istore_1
将栈顶int型数值存入第1个本地变量
0x3d
istore_2
将栈顶int型数值存入第2个本地变量
0x3e
istore_3
将栈顶int型数值存入第3个本地变量
0x3f
lstore_0
将栈顶long型数值存入第0个本地变量
0×40
lstore_1
将栈顶long型数值存入第1个本地变量
0×41
lstore_2
将栈顶long型数值存入第2个本地变量
0×42
lstore_3
将栈顶long型数值存入第3个本地变量
0×43
fstore_0
将栈顶float型数值存入第0个本地变量
0×44
fstore_1
将栈顶float型数值存入第1个本地变量
0×45
fstore_2
将栈顶float型数值存入第2个本地变量
0×46
fstore_3
将栈顶float型数值存入第3个本地变量
0×47
dstore_0
将栈顶double型数值存入第0个本地变量
0×48
dstore_1
将栈顶double型数值存入第1个本地变量
0×49
dstore_2
将栈顶double型数值存入第2个本地变量
0x4a
dstore_3
将栈顶double型数值存入第3个本地变量
0x4b
astore_0
将栈顶引用型数值存入第0个本地变量
0x4c
astore_1
将栈顶引用型数值存入第1个本地变量
0x4d
astore_2
将栈顶引用型数值存入第2个本地变量
0x4e
astore_3
将栈顶引用型数值存入第3个本地变量
0x4f
iastore
将栈顶int型数值存入指定数组的指定索引位置
0×50
lastore
将栈顶long型数值存入指定数组的指定索引位置
0×51
fastore
将栈顶float型数值存入指定数组的指定索引位置
0×52
dastore
将栈顶double型数值存入指定数组的指定索引位置
0×53
aastore
将栈顶引用型数值存入指定数组的指定索引位置
0×54
bastore
将栈顶boolean或byte型数值存入指定数组的指定索引位置
0×55
castore
将栈顶char型数值存入指定数组的指定索引位置
0×56
sastore
将栈顶short型数值存入指定数组的指定索引位置
0×57
pop
将栈顶数值弹出 (数值不能是long或double类型的)
0×58
pop2
将栈顶的一个(long或double类型的)或两个数值弹出(其它)
0×59
dup
复制栈顶数值并将复制值压入栈顶
0x5a
dup_x1
复制栈顶数值并将两个复制值压入栈顶
0x5b
dup_x2
复制栈顶数值并将三个(或两个)复制值压入栈顶
0x5c
dup2
复制栈顶一个(long或double类型的)或两个(其它)数值并将复制值压入栈顶
0x5d
dup2_x1
<待补充>
0x5e
dup2_x2
<待补充>
0x5f
swap
将栈最顶端的两个数值互换(数值不能是long或double类型的)
0×60
iadd
将栈顶两int型数值相加并将结果压入栈顶
0×61
ladd
将栈顶两long型数值相加并将结果压入栈顶
0×62
fadd
将栈顶两float型数值相加并将结果压入栈顶
0×63
dadd
将栈顶两double型数值相加并将结果压入栈顶
0×64
isub
将栈顶两int型数值相减并将结果压入栈顶
0×65
lsub
将栈顶两long型数值相减并将结果压入栈顶
0×66
fsub
将栈顶两float型数值相减并将结果压入栈顶
0×67
dsub
将栈顶两double型数值相减并将结果压入栈顶
0×68
imul
将栈顶两int型数值相乘并将结果压入栈顶
0×69
lmul
将栈顶两long型数值相乘并将结果压入栈顶
0x6a
fmul
将栈顶两float型数值相乘并将结果压入栈顶
0x6b
dmul
将栈顶两double型数值相乘并将结果压入栈顶
0x6c
idiv
将栈顶两int型数值相除并将结果压入栈顶
0x6d
ldiv
将栈顶两long型数值相除并将结果压入栈顶
0x6e
fdiv
将栈顶两float型数值相除并将结果压入栈顶
0x6f
ddiv
将栈顶两double型数值相除并将结果压入栈顶
0×70
irem
将栈顶两int型数值作取模运算并将结果压入栈顶
0×71
lrem
将栈顶两long型数值作取模运算并将结果压入栈顶
0×72
frem
将栈顶两float型数值作取模运算并将结果压入栈顶
0×73
drem
将栈顶两double型数值作取模运算并将结果压入栈顶
0×74
ineg
将栈顶int型数值取负并将结果压入栈顶
0×75
lneg
将栈顶long型数值取负并将结果压入栈顶
0×76
fneg
将栈顶float型数值取负并将结果压入栈顶
0×77
dneg
将栈顶double型数值取负并将结果压入栈顶
0×78
ishl
将int型数值左移位指定位数并将结果压入栈顶
0×79
lshl
将long型数值左移位指定位数并将结果压入栈顶
0x7a
ishr
将int型数值右(符号)移位指定位数并将结果压入栈顶
0x7b
lshr
将long型数值右(符号)移位指定位数并将结果压入栈顶
0x7c
iushr
将int型数值右(无符号)移位指定位数并将结果压入栈顶
0x7d
lushr
将long型数值右(无符号)移位指定位数并将结果压入栈顶
0x7e
iand
将栈顶两int型数值作“按位与”并将结果压入栈顶
0x7f
land
将栈顶两long型数值作“按位与”并将结果压入栈顶
0×80
ior
将栈顶两int型数值作“按位或”并将结果压入栈顶
0×81
lor
将栈顶两long型数值作“按位或”并将结果压入栈顶
0×82
ixor
将栈顶两int型数值作“按位异或”并将结果压入栈顶
0×83
lxor
将栈顶两long型数值作“按位异或”并将结果压入栈顶
0×84
iinc
将指定int型变量增加指定值,可以有两个变量,分别表示index, const,index指第index个int型本地变量,const增加的值
0×85
i2l
将栈顶int型数值强制转换成long型数值并将结果压入栈顶
0×86
i2f
将栈顶int型数值强制转换成float型数值并将结果压入栈顶
0×87
i2d
将栈顶int型数值强制转换成double型数值并将结果压入栈顶
0×88
l2i
将栈顶long型数值强制转换成int型数值并将结果压入栈顶
0×89
l2f
将栈顶long型数值强制转换成float型数值并将结果压入栈顶
0x8a
l2d
将栈顶long型数值强制转换成double型数值并将结果压入栈顶
0x8b
f2i
将栈顶float型数值强制转换成int型数值并将结果压入栈顶
0x8c
f2l
将栈顶float型数值强制转换成long型数值并将结果压入栈顶
0x8d
f2d
将栈顶float型数值强制转换成double型数值并将结果压入栈顶
0x8e
d2i
将栈顶double型数值强制转换成int型数值并将结果压入栈顶
0x8f
d2l
将栈顶double型数值强制转换成long型数值并将结果压入栈顶
0×90
d2f
将栈顶double型数值强制转换成float型数值并将结果压入栈顶
0×91
i2b
将栈顶int型数值强制转换成byte型数值并将结果压入栈顶
0×92
i2c
将栈顶int型数值强制转换成char型数值并将结果压入栈顶
0×93
i2s
将栈顶int型数值强制转换成short型数值并将结果压入栈顶
0×94
lcmp
比较栈顶两long型数值大小,并将结果(1,0,-1)压入栈顶
0×95
fcmpl
比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶
0×96
fcmpg
比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶
0×97
dcmpl
比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶
0×98
dcmpg
比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶
0×99
ifeq
当栈顶int型数值等于0时跳转
0x9a
ifne
当栈顶int型数值不等于0时跳转
0x9b
iflt
当栈顶int型数值小于0时跳转
0x9c
ifge
当栈顶int型数值大于等于0时跳转
0x9d
ifgt
当栈顶int型数值大于0时跳转
0x9e
ifle
当栈顶int型数值小于等于0时跳转
0x9f
if_icmpeq
比较栈顶两int型数值大小,当结果等于0时跳转
0xa0
if_icmpne
比较栈顶两int型数值大小,当结果不等于0时跳转
0xa1
if_icmplt
比较栈顶两int型数值大小,当结果小于0时跳转
0xa2
if_icmpge
比较栈顶两int型数值大小,当结果大于等于0时跳转
0xa3
if_icmpgt
比较栈顶两int型数值大小,当结果大于0时跳转
0xa4
if_icmple
比较栈顶两int型数值大小,当结果小于等于0时跳转
0xa5
if_acmpeq
比较栈顶两引用型数值,当结果相等时跳转
0xa6
if_acmpne
比较栈顶两引用型数值,当结果不相等时跳转
0xa7
goto
无条件跳转
0xa8
jsr
跳转至指定16位offset位置,并将jsr下一条指令地址压入栈顶
0xa9
ret
返回至本地变量指定的index的指令位置(一般与jsr, jsr_w联合使用)
0xaa
tableswitch
用于switch条件跳转,case值连续(可变长度指令)
0xab
lookupswitch
用于switch条件跳转,case值不连续(可变长度指令)
0xac
ireturn
从当前方法返回int
0xad
lreturn
从当前方法返回long
0xae
freturn
从当前方法返回float
0xaf
dreturn
从当前方法返回double
0xb0
areturn
从当前方法返回对象引用
0xb1
return
从当前方法返回void
0xb2
getstatic
获取指定类的静态域,并将其值压入栈顶
0xb3
putstatic
为指定的类的静态域赋值
0xb4
getfield
获取指定类的实例域,并将其值压入栈顶
0xb5
putfield
为指定的类的实例域赋值
0xb6
invokevirtual
调用实例方法
0xb7
invokespecial
调用超类构造方法,实例初始化方法,私有方法
0xb8
invokestatic
调用静态方法
0xb9
invokeinterface
调用接口方法
0xba
–
0xbb
new
创建一个对象,并将其引用值压入栈顶
0xbc
newarray
创建一个指定原始类型(如int, float, char…)的数组,并将其引用值压入栈顶
0xbd
anewarray
创建一个引用型(如类,接口,数组)的数组,并将其引用值压入栈顶
0xbe
arraylength
获得数组的长度值并压入栈顶
0xbf
athrow
将栈顶的异常抛出
0xc0
checkcast
检验类型转换,检验未通过将抛出ClassCastException
0xc1
instanceof
检验对象是否是指定的类的实例,如果是将1压入栈顶,否则将0压入栈顶
0xc2
monitorenter
获得对象的锁,用于同步方法或同步块
0xc3
monitorexit
释放对象的锁,用于同步方法或同步块
0xc4
wide
当本地变量的索引超过255时使用该指令扩展索引宽度。
0xc5
multianewarray
create a new array of dimensions dimensions with elements of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2); the sizes of each dimension is identified by count1, [count2, etc.]
0xc6
ifnull
if value is null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
0xc7
ifnonnull
if value is not null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
0xc8
goto_w
goes to another instruction at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4)
0xc9
jsr_w
jump to subroutine at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4) and place the return address on the stack
0xca
breakpoint
reserved for breakpoints in Java debuggers; should not appear in any class file
0xcb-0xfd
未命名
these values are currently unassigned for opcodes and are reserved for future use
0xfe
impdep1
reserved for implementation-dependent operations within debuggers; should not appear in any class file
0xff
impdep2
reserved for implementation-dependent operations within debuggers; should not appear in any class file
有了以上指令集表,那么在查看字节码就方便多了。
对应英文 => https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
来几个sample:
public void sample1(){
int num = 5;
}
javap -c 查看字节码
public void sample1();
Code:
0: iconst_5
1: istore_1
2: return
解释
iconst_5 //将int型5推送至栈顶
istore_1 //将栈顶int型数值存入第1个本地变量
return //从当前方法返回void
public int sample2(int a, int b) {
return a + b;
}
字节码及解释
public int sample2(int, int);
Code:
0: iload_1 //将第1个int型本地变量推送至栈顶
1: iload_2 //将第2个int型本地变量推送至栈顶
2: iadd //将栈顶两int型数值相加并将结果压入栈顶
3: ireturn //从当前方法返回int
稍稍复杂点
public float sample3() {
float num = 0;
for (int i = 0; i < 5; i++) {
num *= i;
}
return num;
}
字节码及解释
public float sample3();
Code:
0: fconst_0 //将float型0推送至栈顶
1: fstore_1 //将栈顶float型数值存入第1个本地变量
2: iconst_0 //将int型0推送至栈顶,也就是for循环中的i = 0
3: istore_2 //将栈顶int型数值存入第2个本地变量
4: iload_2 //将第2个int型本地变量推送至栈顶
5: iconst_5 //将int型5推送至栈顶,也就是for循环中的 最大值5
6: if_icmpge 20 //比较栈顶两int型数值大小,当结果大于等于0时跳转,
//也就是比较0是否大于等于5,(cpmge指compare larger equals),如果是跳转到到第20条指令
9: fload_1 //将第1个float型本地变量推送至栈顶,也就是变量num
10: iload_2 //将第2个int型本地变量推送至栈顶,也就是for循环中的变量i
11: i2f //int型强转为float型,也就是把变量i强转成float
12: fmul //将栈顶两float型数值相乘并将结果压入栈顶,也就是i与num相乘
13: fstore_1 //将栈顶float型数值存入第1个本地变量,也就是之前i与num的乘积
14: iinc 2, 1 //将指定int型变量增加指定值,将第2个int型本地变量增加1,
//可以看到,第2个int型本地变量就是之前的变量i
17: goto 4 //无条件跳转到指令4,实现循环效果
20: fload_1 //将第1个float型本地变量推送至栈顶
21: freturn //从当前方法返回float
文章参考:
Java_bytecode_instruction_listings:
https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
JVM Opcode Reference:
http://homepages.inf.ed.ac.uk/kwxm/JVM/
jvm_instruction_set:
http://www.mobilefish.com/tutorials/java/java_quickguide_jvm_instruction_set.html
比如说,在多线程编程中,获得一个对象的锁,我们使用jvm指令集(jvm instruction set)中的monitorenter, monitorexit指令
Description: lock object for synchronized execution
Stack
Before After
object to be locked
Example
Jasm-------------------
aload_1 ; push object in local var 1
monitorenter ; acquire lock on object
( do stuff to object ) ;
monitorexit ; release lock
;
Exceptions
NullPointerException if object is null
问题1
那monitorenter, monitorexit指令最后经过jvm执行引擎,变成对应cpu机器的指令是什么?
问题2
最后编译成汇编01字节码,在OS&硬件层次上又是怎样实现锁对象的呢?
指令码 助记符 说明
0x00 nop 无操作
0x01 aconst_null 将null推送至栈顶
0x02 iconst_m1 将int型-1推送至栈顶
0x03 iconst_0 将int型0推送至栈顶
0x04 iconst_1 将int型1推送至栈顶
0x05 iconst_2 将int型2推送至栈顶
0x06 iconst_3 将int型3推送至栈顶
0x07 iconst_4 将int型4推送至栈顶
0x08 iconst_5 将int型5推送至栈顶
0x09 lconst_0 将long型0推送至栈顶
0x0a lconst_1 将long型1推送至栈顶
0x0b fconst_0 将float型0推送至栈顶
0x0c fconst_1 将float型1推送至栈顶
0x0d fconst_2 将float型2推送至栈顶
0x0e dconst_0 将double型0推送至栈顶
0x0f dconst_1 将double型1推送至栈顶
0x10 bipush 将单字节的常量值(-128~127)推送至栈顶
0x11 sipush 将一个短整型常量值(-32768~32767)推送至栈顶
0x12 ldc 将int, float或String型常量值从常量池中推送至栈顶
0x13 ldc_w 将int, float或String型常量值从常量池中推送至栈顶(宽索引)
0x14 ldc2_w 将long或double型常量值从常量池中推送至栈顶(宽索引)
0x15 iload 将指定的int型本地变量推送至栈顶
0x16 lload 将指定的long型本地变量推送至栈顶
0x17 fload 将指定的float型本地变量推送至栈顶
0x18 dload 将指定的double型本地变量推送至栈顶
0x19 aload 将指定的引用类型本地变量推送至栈顶
0x1a iload_0 将第一个int型本地变量推送至栈顶
0x1b iload_1 将第二个int型本地变量推送至栈顶
0x1c iload_2 将第三个int型本地变量推送至栈顶
0x1d iload_3 将第四个int型本地变量推送至栈顶
0x1e lload_0 将第一个long型本地变量推送至栈顶
0x1f lload_1 将第二个long型本地变量推送至栈顶
0x20 lload_2 将第三个long型本地变量推送至栈顶
0x21 lload_3 将第四个long型本地变量推送至栈顶
0x22 fload_0 将第一个float型本地变量推送至栈顶
0x23 fload_1 将第二个float型本地变量推送至栈顶
0x24 fload_2 将第三个float型本地变量推送至栈顶
0x25 fload_3 将第四个float型本地变量推送至栈顶
0x26 dload_0 将第一个double型本地变量推送至栈顶
0x27 dload_1 将第二个double型本地变量推送至栈顶
0x28 dload_2 将第三个double型本地变量推送至栈顶
0x29 dload_3 将第四个double型本地变量推送至栈顶
0x2a aload_0 将第一个引用类型本地变量推送至栈顶
0x2b aload_1 将第二个引用类型本地变量推送至栈顶
0x2c aload_2 将第三个引用类型本地变量推送至栈顶
0x2d aload_3 将第四个引用类型本地变量推送至栈顶
0x2e iaload 将int型数组指定索引的值推送至栈顶
0x2f laload 将long型数组指定索引的值推送至栈顶
0x30 faload 将float型数组指定索引的值推送至栈顶
0x31 daload 将double型数组指定索引的值推送至栈顶
0x32 aaload 将引用型数组指定索引的值推送至栈顶
0x33 baload 将boolean或byte型数组指定索引的值推送至栈顶
0x34 caload 将char型数组指定索引的值推送至栈顶
0x35 saload 将short型数组指定索引的值推送至栈顶
0x36 istore 将栈顶int型数值存入指定本地变量
0x37 lstore 将栈顶long型数值存入指定本地变量
0x38 fstore 将栈顶float型数值存入指定本地变量
0x39 dstore 将栈顶double型数值存入指定本地变量
0x3a astore 将栈顶引用型数值存入指定本地变量
0x3b istore_0 将栈顶int型数值存入第一个本地变量
0x3c istore_1 将栈顶int型数值存入第二个本地变量
0x3d istore_2 将栈顶int型数值存入第三个本地变量
0x3e istore_3 将栈顶int型数值存入第四个本地变量
0x3f lstore_0 将栈顶long型数值存入第一个本地变量
0x40 lstore_1 将栈顶long型数值存入第二个本地变量
0x41 lstore_2 将栈顶long型数值存入第三个本地变量
0x42 lstore_3 将栈顶long型数值存入第四个本地变量
0x43 fstore_0 将栈顶float型数值存入第一个本地变量
0x44 fstore_1 将栈顶float型数值存入第二个本地变量
0x45 fstore_2 将栈顶float型数值存入第三个本地变量
0x46 fstore_3 将栈顶float型数值存入第四个本地变量
0x47 dstore_0 将栈顶double型数值存入第一个本地变量
0x48 dstore_1 将栈顶double型数值存入第二个本地变量
0x49 dstore_2 将栈顶double型数值存入第三个本地变量
0x4a dstore_3 将栈顶double型数值存入第四个本地变量
0x4b astore_0 将栈顶引用型数值存入第一个本地变量
0x4c astore_1 将栈顶引用型数值存入第二个本地变量
0x4d astore_2 将栈顶引用型数值存入第三个本地变量
0x4e astore_3 将栈顶引用型数值存入第四个本地变量
0x4f iastore 将栈顶int型数值存入指定数组的指定索引位置
0x50 lastore 将栈顶long型数值存入指定数组的指定索引位置
0x51 fastore 将栈顶float型数值存入指定数组的指定索引位置
0x52 dastore 将栈顶double型数值存入指定数组的指定索引位置
0x53 aastore 将栈顶引用型数值存入指定数组的指定索引位置
0x54 bastore 将栈顶boolean或byte型数值存入指定数组的指定索引位置
0x55 castore 将栈顶char型数值存入指定数组的指定索引位置
0x56 sastore 将栈顶short型数值存入指定数组的指定索引位置
0x57 pop 将栈顶数值弹出 (数值不能是long或double类型的)
0x58 pop2 将栈顶的一个(long或double类型的)或两个数值弹出(其它)
0x59 dup 复制栈顶数值并将复制值压入栈顶
0x5a dup_x1 复制栈顶数值并将两个复制值压入栈顶
0x5b dup_x2 复制栈顶数值并将三个(或两个)复制值压入栈顶
0x5c dup2 复制栈顶一个(long或double类型的)或两个(其它)数值并将复制值压入栈顶
0x5d dup2_x1 <待补充>
0x5e dup2_x2 <待补充>
0x5f swap 将栈最顶端的两个数值互换(数值不能是long或double类型的)
0x60 iadd 将栈顶两int型数值相加并将结果压入栈顶
0x61 ladd 将栈顶两long型数值相加并将结果压入栈顶
0x62 fadd 将栈顶两float型数值相加并将结果压入栈顶
0x63 dadd 将栈顶两double型数值相加并将结果压入栈顶
0x64 isub 将栈顶两int型数值相减并将结果压入栈顶
0x65 lsub 将栈顶两long型数值相减并将结果压入栈顶
0x66 fsub 将栈顶两float型数值相减并将结果压入栈顶
0x67 dsub 将栈顶两double型数值相减并将结果压入栈顶
0x68 imul 将栈顶两int型数值相乘并将结果压入栈顶
0x69 lmul 将栈顶两long型数值相乘并将结果压入栈顶
0x6a fmul 将栈顶两float型数值相乘并将结果压入栈顶
0x6b dmul 将栈顶两double型数值相乘并将结果压入栈顶
0x6c idiv 将栈顶两int型数值相除并将结果压入栈顶
0x6d ldiv 将栈顶两long型数值相除并将结果压入栈顶
0x6e fdiv 将栈顶两float型数值相除并将结果压入栈顶
0x6f ddiv 将栈顶两double型数值相除并将结果压入栈顶
0x70 irem 将栈顶两int型数值作取模运算并将结果压入栈顶
0x71 lrem 将栈顶两long型数值作取模运算并将结果压入栈顶
0x72 frem 将栈顶两float型数值作取模运算并将结果压入栈顶
0x73 drem 将栈顶两double型数值作取模运算并将结果压入栈顶
0x74 ineg 将栈顶int型数值取负并将结果压入栈顶
0x75 lneg 将栈顶long型数值取负并将结果压入栈顶
0x76 fneg 将栈顶float型数值取负并将结果压入栈顶
0x77 dneg 将栈顶double型数值取负并将结果压入栈顶
0x78 ishl 将int型数值左移位指定位数并将结果压入栈顶
0x79 lshl 将long型数值左移位指定位数并将结果压入栈顶
0x7a ishr 将int型数值右(符号)移位指定位数并将结果压入栈顶
0x7b lshr 将long型数值右(符号)移位指定位数并将结果压入栈顶
0x7c iushr 将int型数值右(无符号)移位指定位数并将结果压入栈顶
0x7d lushr 将long型数值右(无符号)移位指定位数并将结果压入栈顶
0x7e iand 将栈顶两int型数值作“按位与”并将结果压入栈顶
0x7f land 将栈顶两long型数值作“按位与”并将结果压入栈顶
0x80 ior 将栈顶两int型数值作“按位或”并将结果压入栈顶
0x81 lor 将栈顶两long型数值作“按位或”并将结果压入栈顶
0x82 ixor 将栈顶两int型数值作“按位异或”并将结果压入栈顶
0x83 lxor 将栈顶两long型数值作“按位异或”并将结果压入栈顶
0x84 iinc 将指定int型变量增加指定值(i++, i--, i+=2)
0x85 i2l 将栈顶int型数值强制转换成long型数值并将结果压入栈顶
0x86 i2f 将栈顶int型数值强制转换成float型数值并将结果压入栈顶
0x87 i2d 将栈顶int型数值强制转换成double型数值并将结果压入栈顶
0x88 l2i 将栈顶long型数值强制转换成int型数值并将结果压入栈顶
0x89 l2f 将栈顶long型数值强制转换成float型数值并将结果压入栈顶
0x8a l2d 将栈顶long型数值强制转换成double型数值并将结果压入栈顶
0x8b f2i 将栈顶float型数值强制转换成int型数值并将结果压入栈顶
0x8c f2l 将栈顶float型数值强制转换成long型数值并将结果压入栈顶
0x8d f2d 将栈顶float型数值强制转换成double型数值并将结果压入栈顶
0x8e d2i 将栈顶double型数值强制转换成int型数值并将结果压入栈顶
0x8f d2l 将栈顶double型数值强制转换成long型数值并将结果压入栈顶
0x90 d2f 将栈顶double型数值强制转换成float型数值并将结果压入栈顶
0x91 i2b 将栈顶int型数值强制转换成byte型数值并将结果压入栈顶
0x92 i2c 将栈顶int型数值强制转换成char型数值并将结果压入栈顶
0x93 i2s 将栈顶int型数值强制转换成short型数值并将结果压入栈顶
0x94 lcmp 比较栈顶两long型数值大小,并将结果(1,0,-1)压入栈顶
0x95 fcmpl 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶
0x96 fcmpg 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶
0x97 dcmpl 比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶
0x98 dcmpg 比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶
0x99 ifeq 当栈顶int型数值等于0时跳转
0x9a ifne 当栈顶int型数值不等于0时跳转
0x9b iflt 当栈顶int型数值小于0时跳转
0x9c ifge 当栈顶int型数值大于等于0时跳转
0x9d ifgt 当栈顶int型数值大于0时跳转
0x9e ifle 当栈顶int型数值小于等于0时跳转
0x9f if_icmpeq 比较栈顶两int型数值大小,当结果等于0时跳转
0xa0 if_icmpne 比较栈顶两int型数值大小,当结果不等于0时跳转
0xa1 if_icmplt 比较栈顶两int型数值大小,当结果小于0时跳转
0xa2 if_icmpge 比较栈顶两int型数值大小,当结果大于等于0时跳转
0xa3 if_icmpgt 比较栈顶两int型数值大小,当结果大于0时跳转
0xa4 if_icmple 比较栈顶两int型数值大小,当结果小于等于0时跳转
0xa5 if_acmpeq 比较栈顶两引用型数值,当结果相等时跳转
0xa6 if_acmpne 比较栈顶两引用型数值,当结果不相等时跳转
0xa7 goto 无条件跳转
0xa8 jsr 跳转至指定16位offset位置,并将jsr下一条指令地址压入栈顶
0xa9 ret 返回至本地变量指定的index的指令位置(一般与jsr, jsr_w联合使用)
0xaa tableswitch 用于switch条件跳转,case值连续(可变长度指令)
0xab lookupswitch 用于switch条件跳转,case值不连续(可变长度指令)
0xac ireturn 从当前方法返回int
0xad lreturn 从当前方法返回long
0xae freturn 从当前方法返回float
0xaf dreturn 从当前方法返回double
0xb0 areturn 从当前方法返回对象引用
0xb1 return 从当前方法返回void
0xb2 getstatic 获取指定类的静态域,并将其值压入栈顶
0xb3 putstatic 为指定的类的静态域赋值
0xb4 getfield 获取指定类的实例域,并将其值压入栈顶
0xb5 putfield 为指定的类的实例域赋值
0xb6 invokevirtual 调用实例方法
0xb7 invokespecial 调用超类构造方法,实例初始化方法,私有方法
0xb8 invokestatic 调用静态方法
0xb9 invokeinterface 调用接口方法
0xba --
0xbb new 创建一个对象,并将其引用值压入栈顶
0xbc newarray 创建一个指定原始类型(如int, float, char…)的数组,并将其引用值压入栈顶
0xbd anewarray 创建一个引用型(如类,接口,数组)的数组,并将其引用值压入栈顶
0xbe arraylength 获得数组的长度值并压入栈顶
0xbf athrow 将栈顶的异常抛出
0xc0 checkcast 检验类型转换,检验未通过将抛出ClassCastException
0xc1 instanceof 检验对象是否是指定的类的实例,如果是将1压入栈顶,否则将0压入栈顶
0xc2 monitorenter 获得对象的锁,用于同步方法或同步块
0xc3 monitorexit 释放对象的锁,用于同步方法或同步块
0xc4 wide <待补充>
0xc5 multianewarray 创建指定类型和指定维度的多维数组(执行该指令时,操作栈中必须包含各维度的长度值),并将其引用值压入栈顶
0xc6 ifnull 为null时跳转
0xc7 ifnonnull 不为null时跳转
0xc8 goto_w 无条件跳转
0xc9 jsr_w 跳转至指定32位offset位置,并将jsr_w下一条指令地址压入栈顶
网友评论