美文网首页WGCNA分析
【WGCNA】WGCNA学习(二)

【WGCNA】WGCNA学习(二)

作者: jjjscuedu | 来源:发表于2022-06-20 07:18 被阅读0次

=====WGCNA实战(一)======

我们第一个实战采用的是官方提供的矩阵。

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/

 

数据读入:

library(WGCNA)

library(reshape2)

library(stringr)

exprMat <- "LiverFemale3600.clean.txt"  

trait <- " ClinicalTraits.csv"

options(stringsAsFactors = FALSE)

# 打开多线程

enableWGCNAThreads()

# 官方推荐"signed" 或 "signed hybrid"

type = "unsigned"

 

# 相关性计算

# 官方推荐 biweightmid-correlation & bicor

# corType: pearson or bicor

corType = "pearson"

 

corFnc =ifelse(corType=="pearson", cor, bicor)

# 对二元变量,如样本性状信息计算相关性时,

# 或基因表达严重依赖于疾病状态时,需设置下面参数

maxPOutliers =ifelse(corType=="pearson",1,0.05)

 

# 关联样品性状的二元变量时,设置

robustY =ifelse(corType=="pearson",T,F)

##导入数据##

dataExpr <- read.table(exprMat, sep='\t',row.names=1, header=T, quote="", comment="", check.names=F)

 

 

dim(dataExpr)

[1] 3600  135

head(dataExpr)[,1:8]

===数据筛选(可选)====

 

## 筛选中位绝对偏差前75%的基因,至少MAD大于0.01

## 筛选后会降低运算量,也会失去部分信息

## 也可不做筛选,使MAD大于0即可

m.mad <- apply(dataExpr,1,mad)

dataExprVar <- dataExpr[which(m.mad >max(quantile(m.mad, probs=seq(0, 1, 0.25))[2],0.01)),]

 

## 转换为样品在行,基因在列的矩阵

dataExpr <-as.data.frame(t(dataExprVar))

## 检测缺失值

gsg = goodSamplesGenes(dataExpr, verbose =3)

 

if (!gsg$allOK)

{

  if(sum(!gsg$goodGenes)>0)

   printFlush(paste("Removing genes:",

                    paste(names(dataExpr)[!gsg$goodGenes], collapse = ",")));

  if(sum(!gsg$goodSamples)>0)

    printFlush(paste("Removingsamples:",

                    paste(rownames(dataExpr)[!gsg$goodSamples], collapse = ",")));

  #Remove the offending genes and samples from the data:

 dataExpr = dataExpr[gsg$goodSamples, gsg$goodGenes]

}

===样本层级聚类===

sampleTree = hclust(dist(dataExpr), method = "average")

plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="")

abline(h = 15, col = "red")

//从图中可以看出有一个异常的sample F2_221,可以手动或者程序移除

clust = cutreeStatic(sampleTree, cutHeight = 15, minSize = 10)

table(clust)

keepSamples = (clust==1)

dataExpr2 = dataExpr[keepSamples, ]

dataExpr=dataExpr2

nGenes = ncol(dataExpr)

nSamples = nrow(dataExpr)

====确定软阈值===

powers = c(c(1:10), seq(from = 12, to=20, by=2))

sft = pickSoftThreshold(dataExpr, powerVector = powers, verbose = 5)

sizeGrWindow(9, 5)

par(mfrow = c(1,2))

cex1 = 0.9

//横轴是Soft threshold(power),纵轴是无标度网络的评估参数,数值越高,网络越符合无标度特征(non-scale)

plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],

     xlab="Soft Threshold (power)",

     ylab="Scale Free Topology Model Fit,signed R^2",type="n",

     main = paste("Scale independence"))

text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],

     labels=powers,cex=cex1,col="red")

abline(h=0.85,col="red")

//Soft threshold与平均连通性

plot(sft$fitIndices[,1], sft$fitIndices[,5],

     xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",

     main = paste("Mean connectivity"))

text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, 

     cex=cex1, col="red")

===构建共表达网络====

net = blockwiseModules(datExpr, power = 6,TOMType = "unsigned", minModuleSize = 30,reassignThreshold = 0, mergeCutHeight = 0.25,

numericLabels = TRUE, pamRespectsDendro = FALSE,saveTOMFileBase = "femaleMouseTOM",saveTOMs = TRUE,verbose = 3)

其中:

# power: 上一步计算的软阈值 power = sft$powerEstimate

# maxBlockSize: 计算机能处理的最大模块的基因数量 (默认5000);

#  4G内存电脑可处理8000-10000个,16G内存电脑可以处理2万个,32G内存电脑可以处理3万个, 计算资源允许的情况下最好放在一个block里面。

# corType: pearson or bicor

# numericLabels: 返回数字而不是颜色作为模块的名字,后面可以再转换为颜色

# saveTOMs:最耗费时间的计算,存储起来,供后续使用

# mergeCutHeight: 合并模块的阈值,越大模块越少;越小模块越多,冗余度越大;一般在0.15-0.3之间

# loadTOMs: 避免重复计算

table(net$colors)

sizeGrWindow(12, 9)

mergedColors = labels2colors(net$colors)

plotDendroAndColors(net$dendrograms[[1]], mergedColors[net$blockGenes[[1]]],"Module colors",dendroLabels = FALSE, hang = 0.03,addGuide = TRUE, guideHang = 0.05)

moduleLabels = net$colors

moduleColors = labels2colors(moduleLabels)

dynamicColors <- labels2colors(net$unmergedColors)

plotDendroAndColors(net$dendrograms[[1]], cbind(dynamicColors,moduleColors),

                    c("Dynamic Tree Cut", "Module colors"),

                    dendroLabels = FALSE, hang = 0.5,

                    addGuide = TRUE, guideHang = 0.05)

===共表达网络输出====

gene_module <-data.frame(ID=colnames(dataExpr), module=moduleColors)

gene_module =gene_module[order(gene_module$module),]

write.table(gene_module,file=paste0(exprMat,".gene_module.txt"),sep="\t",quote=F,row.names=F)  //我们也可以对每个module进行富集分析查看功能变化

//module eigengene, 可以绘制线图,作为每个模块的基因表达趋势的展示

MEs = net$MEs

MEs_col = MEs

colnames(MEs_col) = paste0("ME", labels2colors(as.numeric(str_replace_all(colnames(MEs),"ME",""))))

MEs_col = orderMEs(MEs_col)

MEs_colt = as.data.frame(t(MEs_col))

colnames(MEs_colt) = rownames(datExpr)

write.table(MEs_colt,file=paste0(exprMat,".module_eipgengene.V2.txt"),sep="\t",quote=F)

plotEigengeneNetworks(MEs_col, "Eigengene adjacency heatmap", 

                      marDendro = c(3,3,2,4),

                      marHeatmap = c(3,4,2,2), plotDendrograms = T, 

                      xLabelsAngle = 90)

===筛选hub基因===

hubs = chooseTopHubInEachModule(dataExpr, colorh=moduleColors, power=power, type=type)

hubs

con <-nearestNeighborConnectivity(dataExpr, nNeighbors=50, power=power, type=type,corFnc = corType)

===获取TOM矩阵,导出Cytoscape可用的数据===

load(net$TOMFiles[1], verbose=T)

TOM <- as.matrix(TOM)

 

dissTOM = 1-TOM

plotTOM = dissTOM^power

diag(plotTOM) = NA

probes = colnames(dataExpr)

dimnames(TOM) <- list(probes, probes)

cyt = exportNetworkToCytoscape(TOM,edgeFile = paste(exprMat, ".edges.txt", sep=""),nodeFile =paste(exprMat, ".nodes.txt", sep=""),weighted = TRUE,threshold = 0.01, nodeNames = probes, nodeAttr = moduleColors)  

//输出node和edge文件,可以直接导入cytoscape进行网络的可视化

//threshold 默认为0.5, 可以根据自己的需要调整,也可以都导出后在cytoscape中再调整

本文使用 文章同步助手 同步

相关文章

网友评论

    本文标题:【WGCNA】WGCNA学习(二)

    本文链接:https://www.haomeiwen.com/subject/sjgamrtx.html