一、摘要
在人工智能时代,法律文书只是海量数据的一个产生源,但它所提供的数据具有数据量大、涉及面广、影响力大、时效性强等重要特点。因此,本文将爬取裁判文书网的若干法律文书,希望可以为喜欢网络爬虫的同学提供一点灵感。
二、运行环境
1.Pycharm
2.python 3.6
3.selenium
4.lxml
三、思路
(1)主页链接为http://wenshu.court.gov.cn/,一共有五种类型的法律文书,因此我们需要将五种类型事件对应的URL作为爬虫的种子URL
(2)由于裁判文书网不允许爬虫,因此我们需要使用一些反爬虫策略(建立代理IP池、改变user-agent)
(3)我们需要利用selenium模拟浏览器登陆,否则将无法获取数据,这点很重要!!!
四、实现代码
import requests
from lxml import etree
from selenium import webdriver
import time
import lxml.html
import random
#head = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36"}
UA_LIST = [
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
"Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
]
headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'zh-CN,zh;q=0.9',
'Connection': 'keep-alive',
'Host': 'wenshu.court.gov.cn',
'User-Agent': random.choice(UA_LIST)
}
def downloadHtml(url):
try:
r = requests.get(url, headers=headers)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return ""
def parse():
list = []
url = "http://wenshu.court.gov.cn"
response = downloadHtml(url)
html = etree.HTML(response)
urls = html.xpath("//*[@id='nav']/ul/li/a[@target='_blank']/@href")
for ul0 in range(len(urls)):
fullurl = url + urls[ul0]
# 模拟谷歌浏览器
driver = webdriver.Chrome('C:\chromedriver_win32\chromedriver.exe')
driver.get(fullurl)
time.sleep(20)
html = driver.page_source
doc = lxml.html.fromstring(html)
url1 = doc.xpath("//*[@id='resultList']/div/table/tbody/tr[1]/td/div/a[2]/@href")
list = list + url1
driver.close()
return list
def URL():
urlList = []
url = "http://wenshu.court.gov.cn"
base = parse()
for i in range(len(base)):
new_url = url + base[i]
urlList.append(new_url)
return urlList
def download(url):
driver = webdriver.Chrome('C:\chromedriver_win32\chromedriver.exe')
driver.get(url)
time.sleep(10)
html = driver.page_source
doc = lxml.html.fromstring(html)
try:
title = doc.xpath("//*[@id='contentTitle']/text()")
content = doc.xpath("//*[@id='DivContent']/div/text()")
for title_i, content_i in zip(title, content):
content = {
'title': title,
'app_title': content
}
print(content)
except:
print("")
if __name__ == '__main__':
urlss = URL()
for i in range(len(urlss)):
download(urlss[i])
五、运行结果
六、总结
这次学习的东西还是很多,selenium用的模块很多。爬取数据的时候使用了不同的方式,受益匪浅。
网友评论