1.测试用例
2.基本方法
3.filter2D函数
矩阵的掩码操作很简单。其思想是:根据掩码矩阵(也称作核)重新计算图像中每个像素的值
。掩码矩阵中的值
表示近邻像素值
(包括该像素自身的值)对新像素值有多大影响。从数学观点看,我们用自己设置的权值,对像素邻域内的值做了个加权平均。
1.测试用例
思考一下图像对比度增强的问题。我们可以对图像的每个像素应用下面的公式:
上面那种表达法是公式的形式,而下面那种是以掩码矩阵表示的紧凑形式。使用掩码矩阵的时候,我们先把矩阵中心的元素(上面的例子中是(0,0)位置的元素,也就是5)对齐到要计算的目标像素上,再把邻域像素值和相应的矩阵元素值的乘积加起来。虽然这两种形式是完全等价的,但在大矩阵情况下,下面的形式看起来会清楚得多。
现在,我们来看看实现掩码(核)操作的两种方法。一种方法是用基本的像素访问方法,另一种方法是用 filter2D 函数。
我们使用的图像如下
2基本方法
下面是实现了上述功能的函数:
-(cv::Mat)SharpenSourceMat:(cv::Mat) myImage {
CV_Assert(myImage.depth() == CV_8U); // 仅接受uchar图像
Mat Result;
Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels();
for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast<uchar>(5*current[I]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[I]);
}
}
Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));
return Result;
}
刚进入函数的时候,我们要确保输入图像是无符号字符类型的。为了做到这点,我们使用了 CV_Assert 函数。若该函数括号内的表达式为false,则会抛出一个错误。
CV_Assert(myImage.depth() == CV_8U); // 仅接受uchar图像
然后,我们创建了一个与输入有着相同大小和类型的输出图像。在 前面的章节中知道,根据图像的通道数,我们有一个或多个子列。我们用指针在每一个通道上迭代,因此通道数就决定了需计算的元素总数。
Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels();
利用C语言的[]操作符,我们能简单明了地访问像素。因为要同时访问多行像素,所以我们获取了其中每一行像素的指针(分别是前一行、当前行和下一行)。此外,我们还需要一个指向计算结果存储位置的指针。有了这些指针后,我们使用[]操作符,就能轻松访问到目标元素。为了让输出指针向前移动,我们在每一次操作之后对输出指针进行了递增(移动一个字节):
for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast<uchar>(5*current[I]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[I]);
}
}
在图像的边界上,上面给出的公式会访问不存在的像素位置(比如(0,-1))。因此我们的公式对边界点来说是未定义的。一种简单的解决方法,是不对这些边界点使用掩码,而直接把它们设为0:
Result.row(0).setTo(Scalar(0)); // 上边界
Result.row(Result.rows-1).setTo(Scalar(0)); // 下边界
Result.col(0).setTo(Scalar(0)); // 左边界
Result.col(Result.cols-1).setTo(Scalar(0)); // 右边界
3filter2D函数
滤波器在图像处理中的应用太广泛了,因此OpenCV也有个用到了滤波器掩码(某些场合也称作核)的函数。不过想使用这个函数,你必须先定义一个表示掩码的 Mat 对象:
Mat kern = (Mat_<char>(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
然后调用 filter2D 函数,参数包括输入、输出图像以及用到的核:
它还带有第五个可选参数——指定核的中心,和第六个可选参数——指定函数在未定义区域(边界)的行为。使用该函数有一些优点,如代码更加清晰简洁、通常比 自己实现的方法 速度更快(因为有一些专门针对它实现的优化技术)等等。
-(cv::Mat)filter2DSourceMat:(cv::Mat) myImage {
Mat kern = (Mat_<char>(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
Mat Result;
filter2D(myImage, Result, myImage.depth(), kern );
return Result;
}
代码测试
#ifdef __cplusplus
#import <opencv2/opencv.hpp>
#import <opencv2/imgcodecs/ios.h>
#import <opencv2/imgproc.hpp>
#import <opencv2/highgui.hpp>
#import <opencv2/core/operations.hpp>
#import <opencv2/core/core_c.h>
using namespace cv;
using namespace std;
#endif
#import "KernViewController.h"
@interface KernViewController ()
@end
@implementation KernViewController
- (void)viewDidLoad {
[super viewDidLoad];
UIImage * image = [UIImage imageNamed:@"lena.jpg"];
Mat sourceMat = [self cvMatFromUIImage:image];
Mat rgbSourceMat;
cvtColor(sourceMat, rgbSourceMat, COLOR_RGBA2BGR);
UIImageView *imageView;
imageView = [self createImageViewInRect:CGRectMake(0, 100, 150, 150)];
[self.view addSubview:imageView];
imageView.image = [self UIImageFromCVMat:rgbSourceMat];
Mat result = [self SharpenSourceMat:rgbSourceMat];
imageView = [self createImageViewInRect:CGRectMake(0, 250, 150, 150)];
[self.view addSubview:imageView];
imageView.image = [self UIImageFromCVMat:result];
result = [self filter2DSourceMat:rgbSourceMat];
imageView = [self createImageViewInRect:CGRectMake(0, 400, 150, 150)];
[self.view addSubview:imageView];
imageView.image = [self UIImageFromCVMat:result];
// Do any additional setup after loading the view.
}
-(cv::Mat)SharpenSourceMat:(cv::Mat) myImage {
CV_Assert(myImage.depth() == CV_8U); // 仅接受uchar图像
Mat Result;
Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels();
for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast<uchar>(5*current[I]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[I]);
}
}
Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));
return Result;
}
-(cv::Mat)filter2DSourceMat:(cv::Mat) myImage {
Mat kern = (Mat_<char>(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
Mat Result;
filter2D(myImage, Result, myImage.depth(), kern );
return Result;
}
#pragma mark - private
///rgbX
- (cv::Mat)cvMatFromUIImage:(UIImage *)image
{
CGColorSpaceRef colorSpace = CGImageGetColorSpace(image.CGImage);
CGFloat cols = image.size.width;
CGFloat rows = image.size.height;
Mat cvMat(rows, cols, CV_8UC4); // 8 bits per component, 4 channels (color channels + alpha)
CGContextRef contextRef = CGBitmapContextCreate(cvMat.data, // Pointer to data
cols, // Width of bitmap
rows, // Height of bitmap
8, // Bits per component
cvMat.step[0], // Bytes per row
colorSpace, // Colorspace
kCGImageAlphaNoneSkipLast |
kCGBitmapByteOrderDefault); // Bitmap info flags
CGContextDrawImage(contextRef, CGRectMake(0, 0, cols, rows), image.CGImage);
CGContextRelease(contextRef);
return cvMat;
}
-(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat
{
// mat 是brg 而 rgb
Mat src;
NSData *data=nil;
CGColorSpaceRef colorSpace;
if (cvMat.elemSize() == 1) {
colorSpace = CGColorSpaceCreateDeviceGray();
data= [NSData dataWithBytes:cvMat.data length:cvMat.elemSize()*cvMat.total()];
} else {
cvtColor(cvMat, src, COLOR_BGR2RGB);
data= [NSData dataWithBytes:src.data length:src.elemSize()*src.total()];
colorSpace = CGColorSpaceCreateDeviceRGB();
}
CGDataProviderRef provider = CGDataProviderCreateWithCFData((__bridge CFDataRef)data);
// Creating CGImage from cv::Mat
CGImageRef imageRef = CGImageCreate(cvMat.cols, //width
cvMat.rows, //height
8, //bits per component
8 * cvMat.elemSize(), //bits per pixel
cvMat.step[0], //bytesPerRow
colorSpace, //colorspace
kCGImageAlphaNone|kCGBitmapByteOrderDefault,// bitmap info
provider, //CGDataProviderRef
NULL, //decode
false, //should interpolate
kCGRenderingIntentAbsoluteColorimetric //intent
);
// Getting UIImage from CGImage
UIImage *finalImage = [UIImage imageWithCGImage:imageRef];
CGImageRelease(imageRef);
CGDataProviderRelease(provider);
CGColorSpaceRelease(colorSpace);
return finalImage;
}
@end
结果
网友评论