本文转载自Gityuan的博客,原文地址为:http://gityuan.com/2016/02/01/android-booting/
转载请注明作者及原文链接。
基于Android 6.0的源码剖析, Android启动过程概述
一. 概述
Android系统底层基于Linux Kernel, 当Kernel启动过程会创建init进程, 该进程是所有用户空间的鼻祖, init进程会启动servicemanager(binder服务管家), Zygote进程(Java进程的鼻祖). Zygote进程会创建 system_server进程以及各种app进程,下图是这几个系统重量级进程之间的层级关系。
1二. init
init是Linux系统中用户空间的第一个进程(pid=1), Kerner启动后会调用/system/core/init/Init.cpp的main()方法.
2.1 Init.main
int main(int argc, char** argv) {
...
klog_init(); //初始化kernel log
property_init(); //创建一块共享的内存空间,用于属性服务
signal_handler_init(); //初始化子进程退出的信号处理过程
property_load_boot_defaults(); //加载/default.prop文件
start_property_service(); //启动属性服务器(通过socket通信)
init_parse_config_file("/init.rc"); //解析init.rc文件
//执行rc文件中触发器为 on early-init的语句
action_for_each_trigger("early-init", action_add_queue_tail);
//执行rc文件中触发器为 on init的语句
action_for_each_trigger("init", action_add_queue_tail);
//执行rc文件中触发器为 on late-init的语句
action_for_each_trigger("late-init", action_add_queue_tail);
while (true) {
if (!waiting_for_exec) {
execute_one_command();
restart_processes();
}
int timeout = -1;
if (process_needs_restart) {
timeout = (process_needs_restart - gettime()) * 1000;
if (timeout < 0)
timeout = 0;
}
if (!action_queue_empty() || cur_action) {
timeout = 0;
}
epoll_event ev;
//循环 等待事件发生
int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, timeout));
if (nr == -1) {
ERROR("epoll_wait failed: %s\n", strerror(errno));
} else if (nr == 1) {
((void (*)()) ev.data.ptr)();
}
}
return 0;
}
init进程的主要功能点:
- 分析和运行所有的init.rc文件;
- 生成设备驱动节点; (通过rc文件创建)
- 处理子进程的终止(signal方式);
- 提供属性服务property service。
2.2 Zygote自动重启机制
当init解析到下面这条语句,便会启动Zygote进程
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
class main //伴随着main class的启动而启动
socket zygote stream 660 root system //创建socket
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart media //当zygote重启时,则会重启media
onrestart restart netd // 当zygote重启时,则会重启netd
当init子进程(Zygote)退出时,会产生SIGCHLD信号,并发送给init进程,通过socket套接字传递数据,调用到wait_for_one_process()方法,根据是否是oneshot,来决定是重启子进程,还是放弃启动。由于缺省模式oneshot=false,因此Zygote一旦被杀便会再次由init进程拉起.
2
接下来,便是进入了Zygote进程.
三. Zygote
当Zygote进程启动后, 便会执行到frameworks/base/cmds/app_process/App_main.cpp文件的main()方法. 整个调用流程:
App_main.main
AndroidRuntime.start
AndroidRuntime.startVm
AndroidRuntime.startReg
ZygoteInit.main (首次进入Java世界)
registerZygoteSocket
preload
startSystemServer
runSelectLoop
3.1 App_main.main
int main(int argc, char* const argv[])
{
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
while (i < argc) {
...//参数解析
}
//设置进程名
if (!niceName.isEmpty()) {
runtime.setArgv0(niceName.string());
set_process_name(niceName.string());
}
if (zygote) {
// 启动AppRuntime,见小节[3.2]
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
}
}
在app_process进程启动过程,有两个分支:
- 当zygote为true时,则执行ZygoteInit.main()
- 当zygote为false时,则执行RuntimeInit.main()
3.2 AndroidRuntime::start
[-> AndroidRuntime.cpp]
void AndroidRuntime::start(const char* className, const Vector<String8>& options)
{
...
// 虚拟机创建
if (startVm(&mJavaVM, &env, zygote) != 0) {
return;
}
onVmCreated(env);
// JNI方法注册
if (startReg(env) < 0) {
return;
}
...
// 调用ZygoteInit.main()方法[见小节3.3]
env->CallStaticVoidMethod(startClass, startMeth, strArray);
3.3 ZygoteInit.main
[–>ZygoteInit.java]
public static void main(String argv[]) {
try {
...
registerZygoteSocket(socketName); //为Zygote注册socket
preload(); // 预加载类和资源[见小节3.4]
...
if (startSystemServer) {
startSystemServer(abiList, socketName);//启动system_server[见小节3.5]
}
Log.i(TAG, "Accepting command socket connections");
runSelectLoop(abiList); //进入循环模式[见小节3.6]
...
} catch (MethodAndArgsCaller caller) {
caller.run(); //启动system_server中会讲到。
}
...
}
3.4 ZygoteInit.preload
[–>ZygoteInit.java]
static void preload() {
Log.d(TAG, "begin preload");
preloadClasses();
preloadResources();
preloadOpenGL();
preloadSharedLibraries();
WebViewFactory.prepareWebViewInZygote();
Log.d(TAG, "end preload");
}
3.5 ZygoteInit.startSystemServer
[–>ZygoteInit.java]
private static boolean startSystemServer(String abiList, String socketName)
throws MethodAndArgsCaller, RuntimeException {
...
// fork子进程system_server
pid = Zygote.forkSystemServer(
parsedArgs.uid, parsedArgs.gid,
parsedArgs.gids,
parsedArgs.debugFlags,
null,
parsedArgs.permittedCapabilities,
parsedArgs.effectiveCapabilities);
...
if (pid == 0) {
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
//进入system_server进程[见小节4.1]
handleSystemServerProcess(parsedArgs);
}
return true;
}
3.6 ZygoteInit.runSelectLoop
[–>ZygoteInit.java]
private static void runSelectLoop(String abiList) throws MethodAndArgsCaller {
ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
//sServerSocket是socket通信中的服务端,即zygote进程
fds.add(sServerSocket.getFileDescriptor());
peers.add(null);
while (true) {
StructPollfd[] pollFds = new StructPollfd[fds.size()];
for (int i = 0; i < pollFds.length; ++i) {
pollFds[i] = new StructPollfd();
pollFds[i].fd = fds.get(i);
pollFds[i].events = (short) POLLIN;
}
...
Os.poll(pollFds, -1);
for (int i = pollFds.length - 1; i >= 0; --i) {
//采用I/O多路复用机制,当客户端发出 连接请求或者数据处理请求时,则执行continue
if ((pollFds[i].revents & POLLIN) == 0) {
continue;
}
if (i == 0) {
//创建客户端连接
ZygoteConnection newPeer = acceptCommandPeer(abiList);
peers.add(newPeer);
fds.add(newPeer.getFileDesciptor());
} else {
//处理客户端数据事务
boolean done = peers.get(i).runOnce();
if (done) {
peers.remove(i);
fds.remove(i);
}
}
}
}
}
Zygote进程创建Java虚拟机,并注册JNI方法, 真正成为Java进程的母体,用于孵化Java进程. 在创建完system_server进程后,zygote功成身退,调用runSelectLoop(),随时待命,当接收到请求创建新进程请求时立即唤醒并执行相应工作。
四. system_server
Zygote通过fork后创建system_server进程,在小节[3.5]执行完startSystemServer()方法后,进入到了handleSystemServerProcess()方法,如下所示。
4.1 handleSystemServerProcess
[–>ZygoteInit.java]
private static void handleSystemServerProcess( ZygoteConnection.Arguments parsedArgs) throws ZygoteInit.MethodAndArgsCaller {
...
if (parsedArgs.niceName != null) {
//设置当前进程名为"system_server"
Process.setArgV0(parsedArgs.niceName);
}
final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
if (systemServerClasspath != null) {
//执行dex优化操作,比如services.jar
performSystemServerDexOpt(systemServerClasspath);
}
if (parsedArgs.invokeWith != null) {
...
} else {
ClassLoader cl = null;
if (systemServerClasspath != null) {
cl = new PathClassLoader(systemServerClasspath, ClassLoader.getSystemClassLoader());
Thread.currentThread().setContextClassLoader(cl);
}
//[见小节4.2]
RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
}
}
system_server进程创建PathClassLoader类加载器.
4.2 RuntimeInit.zygoteInit
[–> RuntimeInit.java]
public static final void zygoteInit(int targetSdkVersion, String[] argv, ClassLoader classLoader) throws ZygoteInit.MethodAndArgsCaller {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "RuntimeInit");
redirectLogStreams(); //重定向log输出
commonInit(); // 通用的一些初始化
nativeZygoteInit(); // zygote初始化
applicationInit(targetSdkVersion, argv, classLoader); // [见小节3.4]
}
Binder线程池启动
nativeZygoteInit()方法经过层层调用,会进入app_main.cpp中的onZygoteInit()方法, Binder线程池的创建也是在这个过程,如下:
virtual void onZygoteInit() {
sp<ProcessState> proc = ProcessState::self();
proc->startThreadPool(); //启动新binder线程池
}
捕获特殊异常
applicationInit()方法经过层层调用,会抛出异常ZygoteInit.MethodAndArgsCaller(m, argv), 具体过程如下:
protected static Runnable applicationInit(int targetSdkVersion, String[] argv,
ClassLoader classLoader) {
...
VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
final Arguments args = new Arguments(argv);
//找到目标类的静态main()方法
invokeStaticMain(args.startClass, args.startArgs, classLoader);
}
private static void invokeStaticMain(String className, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
//此处的className等于SystemServer
Class<?> cl = Class.forName(className, true, classLoader);
Method m = cl.getMethod("main", new Class[] { String[].class });
//抛出异常Runnable对象
throw new ZygoteInit.MethodAndArgsCaller(m, argv);
}
设置虚拟机的堆利用率0.75和置TargetSdk版本;并抛出异常,然后由ZygoteInit.main()捕获该异常, 见下文
4.3 ZygoteInit.main
[–>ZygoteInit.java]
public static void main(String argv[]) {
try {
startSystemServer(abiList, socketName); //抛出MethodAndArgsCaller异常
....
} catch (MethodAndArgsCaller caller) {
caller.run(); //此处通过反射,会调用SystemServer.main()方法 [见小节4.4]
} catch (RuntimeException ex) {
...
}
}
static class MethodAndArgsCaller implements Runnable {
private final Method mMethod;
private final String[] mArgs;
public MethodAndArgsCaller(Method method, String[] args) {
mMethod = method;
mArgs = args;
}
public void run() {
//执行SystemServer.main()
mMethod.invoke(null, new Object[] { mArgs });
}
}
采用抛出异常的方式,用于栈帧清空,提供利用率, 以至于现在大家看到的每个Java进程的调用栈如下:
...
at com.android.server.SystemServer.main(SystemServer.java:175)
at java.lang.reflect.Method.invoke!(Native method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:738)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:628)
4.4 SystemServer.main
[–>SystemServer.java]
public final class SystemServer {
...
public static void main(String[] args) {
//先初始化SystemServer对象,再调用对象的run()方法
new SystemServer().run();
}
}
4.5 SystemServer.run
[–>SystemServer.java]
private void run() {
if (System.currentTimeMillis() < EARLIEST_SUPPORTED_TIME) {
Slog.w(TAG, "System clock is before 1970; setting to 1970.");
SystemClock.setCurrentTimeMillis(EARLIEST_SUPPORTED_TIME);
}
...
Slog.i(TAG, "Entered the Android system server!");
EventLog.writeEvent(EventLogTags.BOOT_PROGRESS_SYSTEM_RUN, SystemClock.uptimeMillis());
Looper.prepareMainLooper();// 准备主线程looper
//加载android_servers.so库,该库包含的源码在frameworks/base/services/目录下
System.loadLibrary("android_servers");
//检测上次关机过程是否失败,该方法可能不会返回
performPendingShutdown();
createSystemContext(); //初始化系统上下文
//创建系统服务管理
mSystemServiceManager = new SystemServiceManager(mSystemContext);
LocalServices.addService(SystemServiceManager.class, mSystemServiceManager);
//启动各种系统服务
try {
startBootstrapServices(); // 启动引导服务
startCoreServices(); // 启动核心服务
startOtherServices(); // 启动其他服务[见小节4.6]
} catch (Throwable ex) {
Slog.e("System", "************ Failure starting system services", ex);
throw ex;
}
//一直循环执行
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
4.6 服务启动
public final class SystemServer {
private void startBootstrapServices() {
...
//phase100
mSystemServiceManager.startBootPhase(SystemService.PHASE_WAIT_FOR_DEFAULT_DISPLAY);
...
}
private void startOtherServices() {
...
//phase480 和phase500
mSystemServiceManager.startBootPhase(SystemService.PHASE_LOCK_SETTINGS_READY);
mSystemServiceManager.startBootPhase(SystemService.PHASE_SYSTEM_SERVICES_READY);
...
//[见小节4.7]
mActivityManagerService.systemReady(new Runnable() {
@Override
public void run() {
//phase550
mSystemServiceManager.startBootPhase(
SystemService.PHASE_ACTIVITY_MANAGER_READY);
...
//phase600
mSystemServiceManager.startBootPhase(
SystemService.PHASE_THIRD_PARTY_APPS_CAN_START);
}
}
}
}
- start: 创建AMS, PMS, LightsService, DMS.
- phase100: 进入Phase100, 创建PKMS, WMS, IMS, DBMS, LockSettingsService, JobSchedulerService, MmsService等服务;
- phase480 && 500: 进入Phase480, 调用WMS, PMS, PKMS, DisplayManagerService这4个服务的systemReady();
- Phase550: 进入phase550, 执行AMS.systemReady(), 启动SystemUI, WebViewFactory, Watchdog.
- Phase600: 进入phase600, 执行AMS.systemReady(), 执行各种服务的systemRunning().
- Phase1000: 进入1000, 执行finishBooting, 启动启动on-hold进程.
4.7 AMS.systemReady
public final class ActivityManagerService extends ActivityManagerNative implements Watchdog.Monitor, BatteryStatsImpl.BatteryCallback {
public void systemReady(final Runnable goingCallback) {
... //update相关
mSystemReady = true;
//杀掉所有非persistent进程
removeProcessLocked(proc, true, false, "system update done");
mProcessesReady = true;
goingCallback.run(); //[见小节1.6.2]
addAppLocked(info, false, null); //启动所有的persistent进程
mBooting = true;
//启动home
startHomeActivityLocked(mCurrentUserId, "systemReady");
//恢复栈顶的Activity
mStackSupervisor.resumeTopActivitiesLocked();
}
}
System_server主线程的启动工作,总算完成, 进入Looper.loop()状态,等待其他线程通过handler发送消息再处理.
五. app
对于普通的app进程,跟system_server进程的启动过来有些类似.不同的是app进程是向发消息给system_server进程, 由system_server向zygote发出创建进程的请求.
理解Android进程创建流程, 可知进程创建后 接下来会进入ActivityThread.main()过程。
5.1 ActivityThread.main
public static void main(String[] args) {
...
Environment.initForCurrentUser();
...
Process.setArgV0("<pre-initialized>");
//创建主线程looper
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false); //attach到系统进程
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
//主线程进入循环状态
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
5.2 调用栈对比
App进程的主线程调用栈的栈底如下:
...
at android.app.ActivityThread.main(ActivityThread.java:5442)
at java.lang.reflect.Method.invoke!(Native method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:738)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:628)
跟前面介绍的system_server进程调用栈对比:
at com.android.server.SystemServer.main(SystemServer.java:175)
at java.lang.reflect.Method.invoke!(Native method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:738)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:628)
六. 启动日志分析
以下列举启动部分重要进程以及关键节点会打印出的log
/system/bin/vold: 383
/system/bin/lmkd: 432
/system/bin/surfaceflinger: 434
/system/bin/debuggerd64: 537
/system/bin/mediaserver: 540
/system/bin/installd: 541
/system/vendor/bin/thermal-engine: 552
zygote64: 557
zygote: 558
system_server: 1274
1. before zygote日志
//启动vold, 再列举当前系统所支持的文件系统. 执行到system/vold/main.cpp的main()
11-23 14:36:47.474 383 383 I vold : Vold 3.0 (the awakening) firing up
11-23 14:36:47.475 383 383 V vold : Detected support for: ext4 vfat
//使用内核的lmk策略
11-23 14:36:47.927 432 432 I lowmemorykiller: Using in-kernel low memory killer interface
//启动SurfaceFlinger
11-23 14:36:48.041 434 434 I SurfaceFlinger: SurfaceFlinger is starting
11-23 14:36:48.042 434 434 I SurfaceFlinger: SurfaceFlinger's main thread ready to run. Initializing graphics H/W...
// 开机动画
11-23 14:36:48.583 508 508 I BootAnimation: bootanimation launching ...
// debuggerd
11-23 14:36:50.306 537 537 I : debuggerd: starting
// installd启动
11-23 14:36:50.311 541 541 I installd: installd firing up
// thermal守护进程
11-23 14:36:50.369 552 552 I ThermalEngine: Thermal daemon started
2. zygote日志
// Zygote64进程(Zygote): AndroidRuntime::start
11-23 14:36:51.260 557 557 D AndroidRuntime: >>>>>> START com.android.internal.os.ZygoteInit uid 0 <<<<<<
// Zygote64进程: AndroidRuntime::startVm
11-23 14:36:51.304 557 557 D AndroidRuntime: CheckJNI is OFF
// 执行ZygoteInit.preload()
11-23 14:36:52.134 557 557 D Zygote : begin preload
// 执行ZygoteInit.preloadClasses(), 预加载3860个classes, 花费时长746ms
11-23 14:36:52.134 557 557 I Zygote : Preloading classes...
11-23 14:36:52.881 557 557 I Zygote : ...preloaded 3860 classes in 746ms.
// 执行ZygoteInit.preloadClasses(), 预加载86组资源, 花费时长179ms
11-23 14:36:53.114 557 557 I Zygote : Preloading resources...
11-23 14:36:53.293 557 557 I Zygote : ...preloaded 86 resources in 179ms.
// 执行ZygoteInit.preloadSharedLibraries()
11-23 14:36:53.494 557 557 I Zygote : Preloading shared libraries...
11-23 14:36:53.503 557 557 D Zygote : end preload
// 执行com_android_internal_os_Zygote_nativeForkSystemServer(),成功fork出system_server进程
11-23 14:36:53.544 557 557 I Zygote : System server process 1274 has been created
// Zygote开始进入runSelectLoop()
11-23 14:36:53.546 557 557 I Zygote : Accepting command socket connections
3. system_server日志
//进入system_server, 建立跟Zygote进程的socket通道
11-23 14:36:53.586 1274 1274 I Zygote : Process: zygote socket opened, supported ABIS: armeabi-v7a,armeabi
// 执行SystemServer.run()
11-23 14:36:53.618 1274 1274 I SystemServer: Entered the Android system server! <===> boot_progress_system_run
// 等待installd准备就绪
11-23 14:36:53.707 1274 1274 I Installer: Waiting for installd to be ready.
//服务启动
11-23 14:36:53.732 1274 1274 I ActivityManager: Memory class: 192
//phase100
11-23 14:36:53.883 1274 1274 I SystemServiceManager: Starting phase 100
11-23 14:36:53.902 1274 1274 I SystemServer: Package Manager
11-23 14:37:03.816 1274 1274 I SystemServer: User Service
...
11-23 14:37:03.940 1274 1274 I SystemServer: Init Watchdog
11-23 14:37:03.941 1274 1274 I SystemServer: Input Manager
11-23 14:37:03.946 1274 1274 I SystemServer: Window Manager
...
11-23 14:37:04.081 1274 1274 I SystemServiceManager: Starting com.android.server.MountService$Lifecycle
11-23 14:37:04.088 1274 2717 D MountService: Thinking about reset, mSystemReady=false, mDaemonConnected=true
11-23 14:37:04.088 1274 1274 I SystemServiceManager: Starting com.android.server.UiModeManagerService
11-23 14:37:04.520 1274 1274 I SystemServer: NetworkTimeUpdateService
//phase480 && 500
11-23 14:37:05.056 1274 1274 I SystemServiceManager: Starting phase 480
11-23 14:37:05.061 1274 1274 I SystemServiceManager: Starting phase 500
11-23 14:37:05.231 1274 1274 I ActivityManager: System now ready <==> boot_progress_ams_ready
11-23 14:37:05.234 1274 1274 I SystemServer: Making services ready
11-23 14:37:05.243 1274 1274 I SystemServer: WebViewFactory preparation
//phase550
11-23 14:37:05.234 1274 1274 I SystemServiceManager: Starting phase 550
11-23 14:37:05.237 1274 1288 I ActivityManager: Force stopping com.android.providers.media appid=10010 user=-1: vold reset
//Phase600
11-23 14:37:06.066 1274 1274 I SystemServiceManager: Starting phase 600
11-23 14:37:06.236 1274 1274 D MountService: onStartUser 0
4. logcat小技巧
通过adb bugreport抓取log信息.先看zygote是否起来, 再看system_server主线程的运行情况,再看ActivityManager情况
adb logcat -s Zygote
adb logcat -s SystemServer
adb logcat -s SystemServiceManager
adb logcat | grep "1359 1359" //system_server情况
adb logcat -s ActivityManager
现场调试命令
- cat proc/[pid]/stack ==> 查看kernel调用栈
- debuggerd -b [pid] ==> 也不可以不带参数-b, 则直接输出到/data/tombstones/目录
- kill -3 [pid] ==> 生成/data/anr/traces.txt文件
- lsof [pid] ==> 查看进程所打开的文件
七. 总结
各大核心进程启动后,都会进入各种对象所相应的main()方法,如下
进程main方法
进程 | 主方法 |
---|---|
init进程 | Init.main() |
zygote进程 | ZygoteInit.main() |
app_process进程 | RuntimeInit.main() |
system_server进程 | SystemServer.main() |
app进程 | ActivityThread.main() |
注意app_process进程是指通过/system/bin/app_process启动的进程,且后面跟的参数不带–zygote,即并非启动zygote进程。 比如常见的有通过adb shell方式来执行am,pm等命令,便是这种方式。
重启相关进程
关于重要进程重启的过程,会触发哪些关联进程重启名单:
- zygote:触发media、netd以及子进程(包括system_server进程)重启;
- system_server: 触发zygote重启;
- surfaceflinger:触发zygote重启;
- servicemanager: 触发zygote、healthd、media、surfaceflinger、drm重启
所以,surfaceflinger,servicemanager,zygote自身以及system_server进程被杀都会触发Zygote重启。
网友评论