美文网首页Android精选
Android系统 init--> zygote-->

Android系统 init--> zygote-->

作者: GeekStrom | 来源:发表于2018-11-08 16:41 被阅读59次

    Android系统启动过程大概可以分为5步:

     Loader --> Kernel --> Native --> Framework --> Application
    
    • Loader

    Boot ROM: 当手机处于关机状态时,长按电源键开机,引导芯片开始从固化在ROM里的预设出代码开始执行,然后加载引导程序到RAM
    Boot Loader:这是启动Android系统之前的引导程序,主要是检查RAM,初始化硬件参数等功能

    • Kernel

    Kernel层是指Android内核层, 到这里才刚刚开始进入Android系统,启动Kernel的swapper进程(pid=0):该进程又称为idle进程, 系统初始化过程Kernel由无到有开创的第一个进程, 用于初始化进程管理、内存管理,加载Display,Camera Driver,Binder Driver等相关工作,启动kthreadd进程(pid=2):是Linux系统的内核进程,会创建内核工作线程kworkder,软中断线程ksoftirqd,thermal等内核守护进程。kthreadd进程是所有内核进程的鼻祖

    • Native

    这里的Native层主要包括init孵化来的用户空间的守护进程、HAL层以及开机动画等。启动init进程(pid=1),是Linux系统的用户进程,init进程是所有用户进程的鼻祖,init进程会孵化出ueventd、logd、healthd、installd、adbd、lmkd等用户守护进程,init进程还启动servicemanager(binder服务管家)、bootanim(开机动画)等重要服务,init进程孵化出Zygote进程,Zygote进程是Android系统的第一个Java进程(即虚拟机进程),Zygote是所有Java进程的父进程

    • Framework

    Zygote进程启动后,加载ZygoteInit类,注册Zygote Socket服务端套接字;加载虚拟机;加载类,加载系统资源,System Server进程,是由Zygote进程fork而来,System Server是Zygote孵化的第一个进程,System Server负责启动和管理整个Java framework,包含ActivityManager,PowerManager等服务, Media Server进程,是由init进程fork而来,负责启动和管理整个C++ framework,包含AudioFlinger,Camera Service等服务

    • Application

      Zygote进程孵化出的第一个App进程是Launcher,即手机桌面APP,没错,手机桌面就是跟我们平时使用的APP一样,它也是一个应用,所有APP进程都是由zygote进程fork出来的

    这些层之间,有的并不能直接交流,比如Native与Kernel之间要经过系统调用才能访问,Java层和Native层需要通过JNI进行调用,严格来说,Android系统实际上是运行于Linux内核上的一系列服务进程,这些进程是维持设备正常运行的关键,当内核启动完成后,就会创建用户空间的第一个进程,即init进程,当init进程启动后会调用/system/core/init/Init.cpp的main()方法,分析和运行所有的init.rc文件,通过rc文件创建设备驱动节点,提供属性服务等操作,Android系统是基于Linux内核的,而在Linux系统中,所有的进程都是init进程的子进程,所有的进程都是直接或者间接地由init进程fork出来的。Zygote进程也是,它是在系统启动的过程,由init进程创建的。在系统启动脚本system/core/rootdir/init.xxx.rc文件中,init.zygote32.rc文件表示当前的手机只配置有32位的Zygote,init.zygote32_64.rc文件表示当前的Zygote同时配置有32位和64位,而且以32位为主Zygote,64位为次Zygote,主次是怎么区分的呢?就是从配置文件中的--socket-name属性来区分的。另外两个init.zygote64.rc、init.zygote64_32.rc分别表示只支持64位的Zygote和同时两个支持,但是以64位为主。以init.zygote64_32.rc为例,我们可以看到启动Zygote进程的脚本命令:

    service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
       class main
       priority -20
       user root
       group root readproc
       socket zygote stream 660 root system
       onrestart write /sys/android_power/request_state wake
       onrestart write /sys/power/state on
       onrestart restart audioserver
       onrestart restart cameraserver
       onrestart restart media
       onrestart restart netd
       onrestart restart wificond
       writepid /dev/cpuset/foreground/tasks
    
    service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary --enable-lazy-preload
       class main
       priority -20
       user root
       group root readproc
       socket zygote_secondary stream 660 root system
       onrestart restart zygote
       writepid /dev/cpuset/foreground/tasks
    

    service告诉init进程创建一个名为"zygote"的进程,这个zygote进程要执行的程序是/system/bin/app_process64,还创建了一个名为zygote的unix domain socket,类型是stream,这个socket是为了后面IPC所用;上面可以看到还有一个zygote_secondary的进程,其实这是为了适配不同的abi型号
    app_main.cpp文件中的main函数,作为Zygote进行的启动入口。app_main.cpp文件的目录路径为:frameworks\base\cmds\app_process64\app_main.cpp,它的main函数的源码如下:

    namespace android {
    
    static void app_usage()
    {
         fprintf(stderr,
             "Usage: app_process [java-options] cmd-dir start-class-name [options]   \n");
    }
    
    class AppRuntime : public AndroidRuntime
    {
    public:
    AppRuntime(char* argBlockStart, const size_t argBlockLength)
        : AndroidRuntime(argBlockStart, argBlockLength)
        , mClass(NULL)
    {
    }
    
    void setClassNameAndArgs(const String8& className, int argc, char * const *argv) {
        mClassName = className;
        for (int i = 0; i < argc; ++i) {
             mArgs.add(String8(argv[i]));
        }
    }
    
    virtual void onVmCreated(JNIEnv* env)
    {
        if (mClassName.isEmpty()) {
            return; // Zygote. Nothing to do here.
        }
    
        /*
         * This is a little awkward because the JNI FindClass call uses the
         * class loader associated with the native method we're executing in.
         * If called in onStarted (from RuntimeInit.finishInit because we're
         * launching "am", for example), FindClass would see that we're calling
         * from a boot class' native method, and so wouldn't look for the class
         * we're trying to look up in CLASSPATH. Unfortunately it needs to,
         * because the "am" classes are not boot classes.
         *
         * The easiest fix is to call FindClass here, early on before we start
         * executing boot class Java code and thereby deny ourselves access to
         * non-boot classes.
         */
        char* slashClassName = toSlashClassName(mClassName.string());
        mClass = env->FindClass(slashClassName);
        if (mClass == NULL) {
            ALOGE("ERROR: could not find class '%s'\n", mClassName.string());
        }
        free(slashClassName);
    
        mClass = reinterpret_cast<jclass>(env->NewGlobalRef(mClass));
    }
    
    virtual void onStarted()
    {
        sp<ProcessState> proc = ProcessState::self();
        ALOGV("App process: starting thread pool.\n");
        proc->startThreadPool();
    
        AndroidRuntime* ar = AndroidRuntime::getRuntime();
        ar->callMain(mClassName, mClass, mArgs);
    
        IPCThreadState::self()->stopProcess();
        hardware::IPCThreadState::self()->stopProcess();
    }
    
    virtual void onZygoteInit()
    {
        sp<ProcessState> proc = ProcessState::self();
        ALOGV("App process: starting thread pool.\n");
        proc->startThreadPool();
    }
    
    virtual void onExit(int code)
    {
        if (mClassName.isEmpty()) {
            // if zygote
            IPCThreadState::self()->stopProcess();
            hardware::IPCThreadState::self()->stopProcess();
        }
    
        AndroidRuntime::onExit(code);
    }
    
    
    String8 mClassName;
    Vector<String8> mArgs;
    jclass mClass;
    };
    
    }
    
    using namespace android;
    
    static size_t computeArgBlockSize(int argc, char* const argv[]) {
    // TODO: This assumes that all arguments are allocated in
    // contiguous memory. There isn't any documented guarantee
    // that this is the case, but this is how the kernel does it
    // (see fs/exec.c).
    //
    // Also note that this is a constant for "normal" android apps.
    // Since they're forked from zygote, the size of their command line
    // is the size of the zygote command line.
    //
    // We change the process name of the process by over-writing
    // the start of the argument block (argv[0]) with the new name of
    // the process, so we'd mysteriously start getting truncated process
    // names if the zygote command line decreases in size.
    uintptr_t start = reinterpret_cast<uintptr_t>(argv[0]);
    uintptr_t end = reinterpret_cast<uintptr_t>(argv[argc - 1]);
    end += strlen(argv[argc - 1]) + 1;
    return (end - start);
    }
    
     static void maybeCreateDalvikCache() {
     #if defined(__aarch64__)
    static const char kInstructionSet[] = "arm64";
    #elif defined(__x86_64__)
    static const char kInstructionSet[] = "x86_64";
    #elif defined(__arm__)
    static const char kInstructionSet[] = "arm";
    #elif defined(__i386__)
    static const char kInstructionSet[] = "x86";
    #elif defined (__mips__) && !defined(__LP64__)
    static const char kInstructionSet[] = "mips";
    #elif defined (__mips__) && defined(__LP64__)
    static const char kInstructionSet[] = "mips64";
    #else
    #error "Unknown instruction set"
    #endif
    const char* androidRoot = getenv("ANDROID_DATA");
    LOG_ALWAYS_FATAL_IF(androidRoot == NULL, "ANDROID_DATA environment variable unset");
    
    char dalvikCacheDir[PATH_MAX];
    const int numChars = snprintf(dalvikCacheDir, PATH_MAX,
            "%s/dalvik-cache/%s", androidRoot, kInstructionSet);
    LOG_ALWAYS_FATAL_IF((numChars >= PATH_MAX || numChars < 0),
            "Error constructing dalvik cache : %s", strerror(errno));
    
    int result = mkdir(dalvikCacheDir, 0711);
    LOG_ALWAYS_FATAL_IF((result < 0 && errno != EEXIST),
            "Error creating cache dir %s : %s", dalvikCacheDir, strerror(errno));
    
    // We always perform these steps because the directory might
    // already exist, with wider permissions and a different owner
    // than we'd like.
    result = chown(dalvikCacheDir, AID_ROOT, AID_ROOT);
    LOG_ALWAYS_FATAL_IF((result < 0), "Error changing dalvik-cache ownership : %s", strerror(errno));
    
    result = chmod(dalvikCacheDir, 0711);
    LOG_ALWAYS_FATAL_IF((result < 0),
            "Error changing dalvik-cache permissions : %s", strerror(errno));
    }
    
     #if defined(__LP64__)
     static const char ABI_LIST_PROPERTY[] = "ro.product.cpu.abilist64";
     static const char ZYGOTE_NICE_NAME[] = "zygote64";
     #else
     static const char ABI_LIST_PROPERTY[] = "ro.product.cpu.abilist32";
     static const char ZYGOTE_NICE_NAME[] = "zygote";
     #endif
    
     int main(int argc, char* const argv[])
     {
    if (!LOG_NDEBUG) {
      String8 argv_String;
      for (int i = 0; i < argc; ++i) {
        argv_String.append("\"");
        argv_String.append(argv[i]);
        argv_String.append("\" ");
      }
      ALOGV("app_process main with argv: %s", argv_String.string());
    }
    
    AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
    // Process command line arguments
    // ignore argv[0]
    argc--;
    argv++;
    
    // Everything up to '--' or first non '-' arg goes to the vm.
    //
    // The first argument after the VM args is the "parent dir", which
    // is currently unused.
    //
    // After the parent dir, we expect one or more the following internal
    // arguments :
    //
    // --zygote : Start in zygote mode
    // --start-system-server : Start the system server.
    // --application : Start in application (stand alone, non zygote) mode.
    // --nice-name : The nice name for this process.
    //
    // For non zygote starts, these arguments will be followed by
    // the main class name. All remaining arguments are passed to
    // the main method of this class.
    //
    // For zygote starts, all remaining arguments are passed to the zygote.
    // main function.
    //
    // Note that we must copy argument string values since we will rewrite the
    // entire argument block when we apply the nice name to argv0.
    //
    // As an exception to the above rule, anything in "spaced commands"
    // goes to the vm even though it has a space in it.
    const char* spaced_commands[] = { "-cp", "-classpath" };
    // Allow "spaced commands" to be succeeded by exactly 1 argument (regardless of -s).
    bool known_command = false;
    
    int i;
    for (i = 0; i < argc; i++) {
        if (known_command == true) {
          runtime.addOption(strdup(argv[i]));
          ALOGV("app_process main add known option '%s'", argv[i]);
          known_command = false;
          continue;
        }
    
        for (int j = 0;
             j < static_cast<int>(sizeof(spaced_commands) / sizeof(spaced_commands[0]));
             ++j) {
          if (strcmp(argv[i], spaced_commands[j]) == 0) {
            known_command = true;
            ALOGV("app_process main found known command '%s'", argv[i]);
          }
        }
    
        if (argv[i][0] != '-') {
            break;
        }
        if (argv[i][1] == '-' && argv[i][2] == 0) {
            ++i; // Skip --.
            break;
        }
    
        runtime.addOption(strdup(argv[i]));
        ALOGV("app_process main add option '%s'", argv[i]);
    }
    
    // Parse runtime arguments.  Stop at first unrecognized option.
    bool zygote = false;
    bool startSystemServer = false;
    bool application = false;
    String8 niceName;
    String8 className;
    
    ++i;  // Skip unused "parent dir" argument.
    while (i < argc) {
        const char* arg = argv[i++];
        if (strcmp(arg, "--zygote") == 0) {
            zygote = true;
            niceName = ZYGOTE_NICE_NAME;
        } else if (strcmp(arg, "--start-system-server") == 0) {
            startSystemServer = true;
        } else if (strcmp(arg, "--application") == 0) {
            application = true;
        } else if (strncmp(arg, "--nice-name=", 12) == 0) {
            niceName.setTo(arg + 12);
        } else if (strncmp(arg, "--", 2) != 0) {
            className.setTo(arg);
            break;
        } else {
            --i;
            break;
        }
    }
    
    Vector<String8> args;
    if (!className.isEmpty()) {
        // We're not in zygote mode, the only argument we need to pass
        // to RuntimeInit is the application argument.
        //
        // The Remainder of args get passed to startup class main(). Make
        // copies of them before we overwrite them with the process name.
        args.add(application ? String8("application") : String8("tool"));
        runtime.setClassNameAndArgs(className, argc - i, argv + i);
    
        if (!LOG_NDEBUG) {
          String8 restOfArgs;
          char* const* argv_new = argv + i;
          int argc_new = argc - i;
          for (int k = 0; k < argc_new; ++k) {
            restOfArgs.append("\"");
            restOfArgs.append(argv_new[k]);
            restOfArgs.append("\" ");
          }
          ALOGV("Class name = %s, args = %s", className.string(), restOfArgs.string());
        }
    } else {
        // We're in zygote mode.
        maybeCreateDalvikCache();
    
        if (startSystemServer) {
            args.add(String8("start-system-server"));
        }
    
        char prop[PROP_VALUE_MAX];
        if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) {
            LOG_ALWAYS_FATAL("app_process: Unable to determine ABI list from property %s.",
                ABI_LIST_PROPERTY);
            return 11;
        }
    
        String8 abiFlag("--abi-list=");
        abiFlag.append(prop);
        args.add(abiFlag);
    
        // In zygote mode, pass all remaining arguments to the zygote
        // main() method.
        for (; i < argc; ++i) {
            args.add(String8(argv[i]));
        }
    }
    
    if (!niceName.isEmpty()) {
        runtime.setArgv0(niceName.string(), true /* setProcName */);
    }
    
    if (zygote) {
        runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
    } else if (className) {
        runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
    } else {
        fprintf(stderr, "Error: no class name or --zygote supplied.\n");
        app_usage();
        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
    }
    }
    

    这是app_main.cpp c++的全部代码,这个方法首先创建一个AppRuntime对象,然后解析启动参数argc、argv[],接着while循环,如果配置的启动参数为--zygote,表示要启动Zygote进程,如果为--start-system-server表示要启动SystemServer进程,如果为--application就表示是普通的应用进程。我们当前的场景中就是第一个,参数解析完成后,此时的局部变量zygote的值为true,最后的if/else分支就会执行runtime.start("com.android.internal.os.ZygoteInit", args, zygote)来继续完成Zygote进行的启动,AppRuntime是AndroidRuntime类的子类,构造方法中没有任何逻辑。那我们接着来看看继续分析app_main文件中的main函数的最后一句runtime.start("com.android.internal.os.ZygoteInit", args, zygote)来看看Zygote进行是如何启动起来的。runtime对象就是AppRuntime,它没有重写start方法,所以会执行父类AndroidRuntime类的start方法,frameworks\base\core\jni\AndroidRuntime.cpp。

    void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
     {
    ALOGD(">>>>>> START %s uid %d <<<<<<\n",
            className != NULL ? className : "(unknown)", getuid());
    
    static const String8 startSystemServer("start-system-server");
    
    /*
     * 'startSystemServer == true' means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    for (size_t i = 0; i < options.size(); ++i) {
        if (options[i] == startSystemServer) {
           /* track our progress through the boot sequence */
           const int LOG_BOOT_PROGRESS_START = 3000;
           LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,  ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
        }
    }
    
    const char* rootDir = getenv("ANDROID_ROOT");
    if (rootDir == NULL) {
        rootDir = "/system";
        if (!hasDir("/system")) {
            LOG_FATAL("No root directory specified, and /android does not exist.");
            return;
        }
        setenv("ANDROID_ROOT", rootDir, 1);
    }
    
    //const char* kernelHack = getenv("LD_ASSUME_KERNEL");
    //ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);
    
    /* start the virtual machine */
    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    if (startVm(&mJavaVM, &env, zygote) != 0) {
        return;
    }
    onVmCreated(env);
    
    /*
     * Register android functions.
     */
    if (startReg(env) < 0) {
        ALOGE("Unable to register all android natives\n");
        return;
    }
    
    /*
     * We want to call main() with a String array with arguments in it.
     * At present we have two arguments, the class name and an option string.
     * Create an array to hold them.
     */
    jclass stringClass;
    jobjectArray strArray;
    jstring classNameStr;
    
    stringClass = env->FindClass("java/lang/String");
    assert(stringClass != NULL);
    strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
    assert(strArray != NULL);
    classNameStr = env->NewStringUTF(className);
    assert(classNameStr != NULL);
    env->SetObjectArrayElement(strArray, 0, classNameStr);
    
    for (size_t i = 0; i < options.size(); ++i) {
        jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
        assert(optionsStr != NULL);
        env->SetObjectArrayElement(strArray, i + 1, optionsStr);
    }
    
    /*
     * Start VM.  This thread becomes the main thread of the VM, and will
     * not return until the VM exits.
     */
    char* slashClassName = toSlashClassName(className);
    jclass startClass = env->FindClass(slashClassName);
    if (startClass == NULL) {
        ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
        /* keep going */
    } else {
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
            "([Ljava/lang/String;)V");
        if (startMeth == NULL) {
            ALOGE("JavaVM unable to find main() in '%s'\n", className);
            /* keep going */
        } else {
            env->CallStaticVoidMethod(startClass, startMeth, strArray);
    
     #if 0
            if (env->ExceptionCheck())
                threadExitUncaughtException(env);
    #endif
        }
    }
    free(slashClassName);
    
    ALOGD("Shutting down VM\n");
    if (mJavaVM->DetachCurrentThread() != JNI_OK)
        ALOGW("Warning: unable to detach main thread\n");
    if (mJavaVM->DestroyJavaVM() != 0)
        ALOGW("Warning: VM did not shut down cleanly\n");
    }
    

    这个方法的第一个参数是启动类的类路径全名即com.android.internal.os.ZygoteInit,第二个参数options就是之前解析好的启动参数,第三个zygote则是否要启动Zygote进程,此时值为true,接下来就调用startVm启动虚拟机,然后执行onVmCreated方法:

     void AndroidRuntime::onVmCreated(JNIEnv* env)
    {
    // If AndroidRuntime had anything to do here, we'd have done it in 'start'.
    }   
    

    此方法在AndroidRuntime类中的实现为空,
    接下来就执行startReg方法,注册android功能。

    int AndroidRuntime::startReg(JNIEnv* env)
    {
    ATRACE_NAME("RegisterAndroidNatives");
    /*
     * This hook causes all future threads created in this process to be
     * attached to the JavaVM.  (This needs to go away in favor of JNI
     * Attach calls.)
     */
    androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);
    
    ALOGV("--- registering native functions ---\n");
    
    /*
     * Every "register" function calls one or more things that return
     * a local reference (e.g. FindClass).  Because we haven't really
     * started the VM yet, they're all getting stored in the base frame
     * and never released.  Use Push/Pop to manage the storage.
     */
    env->PushLocalFrame(200);
    
    if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
        env->PopLocalFrame(NULL);
        return -1;
    }
    env->PopLocalFrame(NULL);
    
    //createJavaThread("fubar", quickTest, (void*) "hello");
    
    return 0;
    }
    

    调用register_jni_procs方法把AndroidRuntime.cpp文件中定义的RegJNIRec gRegJNI[]数组中的所有方法都注册 :

    static const RegJNIRec gRegJNI[] = {
    
    REG_JNI(register_com_android_internal_os_RuntimeInit),
    REG_JNI(register_com_android_internal_os_ZygoteInit),
    REG_JNI(register_android_os_SystemClock),
    REG_JNI(register_android_util_EventLog),
    REG_JNI(register_android_util_Log),
    REG_JNI(register_android_util_MemoryIntArray),
    REG_JNI(register_android_util_PathParser),
    REG_JNI(register_android_app_admin_SecurityLog),
    REG_JNI(register_android_content_AssetManager),
    REG_JNI(register_android_content_StringBlock),
    REG_JNI(register_android_content_XmlBlock),
    REG_JNI(register_android_text_AndroidCharacter),
    REG_JNI(register_android_text_StaticLayout),
    REG_JNI(register_android_text_AndroidBidi),
    REG_JNI(register_android_view_InputDevice),
    REG_JNI(register_android_view_KeyCharacterMap),
    REG_JNI(register_android_os_Process),
    REG_JNI(register_android_os_SystemProperties)
    
    ...
    
    }
    

    总结一下Zygote native 进程做了哪些事情:

    • 创建虚拟机–startVM
    • 注册JNI函数–startReg
    • 通过JNI知道Java层的com.android.internal.os.ZygoteInit 类,调用main 函数,接下来从native层回调到Java层
        public static void main(String argv[]) {
         ZygoteServer zygoteServer = new ZygoteServer();
    
        // Mark zygote start. This ensures that thread creation will throw
        // an error.
        ZygoteHooks.startZygoteNoThreadCreation();
          
               ...
          
            // 注册zygote用的socket. 基于AF_UNIX类型,是一个本机socket
            zygoteServer.registerServerSocket(socketName);
            // In some configurations, we avoid preloading resources and classes eagerly.
            // In such cases, we will preload things prior to our first fork.
            if (!enableLazyPreload) {
                bootTimingsTraceLog.traceBegin("ZygotePreload");
                EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
                    SystemClock.uptimeMillis());
                    
                  // 预加载类和资源
                preload(bootTimingsTraceLog);
                EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
                    SystemClock.uptimeMillis());
                bootTimingsTraceLog.traceEnd(); // ZygotePreload
            } else {
                Zygote.resetNicePriority();
            
    
            // Finish profiling the zygote initialization.
            SamplingProfilerIntegration.writeZygoteSnapshot();
    
            // Do an initial gc to clean up after startup
            bootTimingsTraceLog.traceBegin("PostZygoteInitGC");
            gcAndFinalize();
            bootTimingsTraceLog.traceEnd(); // PostZygoteInitGC
    
            bootTimingsTraceLog.traceEnd(); // ZygoteInit
            // Disable tracing so that forked processes do not inherit stale tracing tags from
            // Zygote.
            Trace.setTracingEnabled(false);
    
            // Zygote process unmounts root storage spaces.
            Zygote.nativeUnmountStorageOnInit();
    
            // Set seccomp policy
            Seccomp.setPolicy();
    
            ZygoteHooks.stopZygoteNoThreadCreation();
           //请求 fork systemserver进程
            if (startSystemServer) {
                startSystemServer(abiList, socketName, zygoteServer);
            }
    
            Log.i(TAG, "Accepting command socket connections");
            zygoteServer.runSelectLoop(abiList);
    
            zygoteServer.closeServerSocket();
        } catch (Zygote.MethodAndArgsCaller caller) {
            caller.run();
        } catch (Throwable ex) {
            Log.e(TAG, "System zygote died with exception", ex);
            zygoteServer.closeServerSocket();
            throw ex;
        }
        }
    

    构造一个ZygoteServer对象,注册zygote用的socket,

    zygoteServer.registerServerSocket(socketName);

        void registerServerSocket(String socketName) {
          if (mServerSocket == null) {
              int fileDesc;
              final String fullSocketName = ANDROID_SOCKET_PREFIX + socketName;
              try {
                String env = System.getenv(fullSocketName);
                fileDesc = Integer.parseInt(env);
              } catch (RuntimeException ex) {
                throw new RuntimeException(fullSocketName + " unset or invalid", ex);
              }
    
              try {
                  FileDescriptor fd = new FileDescriptor();
                  fd.setInt$(fileDesc);
                  mServerSocket = new LocalServerSocket(fd);
              } catch (IOException ex) {
                  throw new RuntimeException(
                          "Error binding to local socket '" + fileDesc + "'", ex);
              }
          }
        }
    

    在这里实例化一个LocalServerSocket,zygote就可以作为服务端,不断的获取其它进程发送过来的请求

    ZygoteInit.preload预加载资源

       static void preload(TimingsTraceLog bootTimingsTraceLog) {
        Log.d(TAG, "begin preload");
        bootTimingsTraceLog.traceBegin("BeginIcuCachePinning");
        beginIcuCachePinning();
        bootTimingsTraceLog.traceEnd(); // BeginIcuCachePinning
        bootTimingsTraceLog.traceBegin("PreloadClasses");
         //预加载位于/system/etc/preloaded-classes文件中的类
        preloadClasses();
        bootTimingsTraceLog.traceEnd(); // PreloadClasses
        bootTimingsTraceLog.traceBegin("PreloadResources");
        //预加载资源,包含drawable和color资源
        preloadResources();
        bootTimingsTraceLog.traceEnd(); // PreloadResources
        Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadAppProcessHALs");
        nativePreloadAppProcessHALs();
        Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
        Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadOpenGL");
        preloadOpenGL();
        Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
        preloadSharedLibraries();
        preloadTextResources();
        // Ask the WebViewFactory to do any initialization that must run in the zygote process,
        // for memory sharing purposes.
        //仅用于zygote进程,用于内存共享的进程
        WebViewFactory.prepareWebViewInZygote();
        endIcuCachePinning();
        warmUpJcaProviders();
        Log.d(TAG, "end preload");
    
        sPreloadComplete = true;
    }
    

    执行Zygote进程的初始化,对于类加载,采用反射机制Class.forName()方法来加载。对于资源加载,主要是 com.android.internal.R.array.preloaded_drawables和com.android.internal.R.array.preloaded_color_state_lists,在应用程序中以com.android.internal.R.xxx开头的资源,便是此时由Zygote加载到内存的,

    ZygoteInit.runSelectLoop

     Runnable runSelectLoop(String abiList) {
        ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
        ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
    
        fds.add(mServerSocket.getFileDescriptor());
        peers.add(null);
    
        while (true) {
            StructPollfd[] pollFds = new StructPollfd[fds.size()];
            for (int i = 0; i < pollFds.length; ++i) {
                pollFds[i] = new StructPollfd();
                pollFds[i].fd = fds.get(i);
                pollFds[i].events = (short) POLLIN;
            }
            try {
                Os.poll(pollFds, -1);
            } catch (ErrnoException ex) {
                throw new RuntimeException("poll failed", ex);
            }
            for (int i = pollFds.length - 1; i >= 0; --i) {
                if ((pollFds[i].revents & POLLIN) == 0) {
                    continue;
                }
    
                if (i == 0) {
                    ZygoteConnection newPeer = acceptCommandPeer(abiList);
                    peers.add(newPeer);
                    fds.add(newPeer.getFileDesciptor());
                } else {
                    try {
                        ZygoteConnection connection = peers.get(i);
                        final Runnable command = connection.processOneCommand(this);
    
                        if (mIsForkChild) {
                            // We're in the child. We should always have a command to run at this
                            // stage if processOneCommand hasn't called "exec".
                            if (command == null) {
                                throw new IllegalStateException("command == null");
                            }
    
                            return command;
                        } else {
                            // We're in the server - we should never have any commands to run.
                            if (command != null) {
                                throw new IllegalStateException("command != null");
                            }
    
                            // We don't know whether the remote side of the socket was closed or
                            // not until we attempt to read from it from processOneCommand. This shows up as
                            // a regular POLLIN event in our regular processing loop.
                            if (connection.isClosedByPeer()) {
                                connection.closeSocket();
                                peers.remove(i);
                                fds.remove(i);
                            }
                        }
                    } catch (Exception e) {
                        if (!mIsForkChild) {
                           
                            Slog.e(TAG, "Exception executing zygote command: ", e);
    
                            
                            ZygoteConnection conn = peers.remove(i);
                            conn.closeSocket();
    
                            fds.remove(i);
                        } else {
                            // We're in the child so any exception caught here has happened post
                            // fork and before we execute ActivityThread.main (or any other main()
                            // method). Log the details of the exception and bring down the process.
                            Log.e(TAG, "Caught post-fork exception in child process.", e);
                            throw e;
                        }
                    }
                }
            }
        }
    }
    

    调用runSelectLoop()无限轮询来等待Activity管理服务ActivityManagerService请求ZygoteConnection.processOneCommand(this)创建新的应用程序进程:

          Runnable processOneCommand(ZygoteServer zygoteServer) {
        String args[];
        Arguments parsedArgs = null;
        FileDescriptor[] descriptors;
    
        try {
            args = readArgumentList();
            descriptors = mSocket.getAncillaryFileDescriptors();
        } catch (IOException ex) {
            throw new IllegalStateException("IOException on command socket", ex);
        }
    
        // readArgumentList returns null only when it has reached EOF with no available
        // data to read. This will only happen when the remote socket has disconnected.
        if (args == null) {
            isEof = true;
            return null;
        }
    
        int pid = -1;
        FileDescriptor childPipeFd = null;
        FileDescriptor serverPipeFd = null;
    
        parsedArgs = new Arguments(args);
    
        if (parsedArgs.abiListQuery) {
            handleAbiListQuery();
            return null;
        }
    
        if (parsedArgs.preloadDefault) {
            handlePreload();
            return null;
        }
    
        if (parsedArgs.preloadPackage != null) {
            handlePreloadPackage(parsedArgs.preloadPackage, parsedArgs.preloadPackageLibs,
                    parsedArgs.preloadPackageCacheKey);
            return null;
        }
    
        if (parsedArgs.permittedCapabilities != 0 || parsedArgs.effectiveCapabilities != 0) {
            throw new ZygoteSecurityException("Client may not specify capabilities: " +
                    "permitted=0x" + Long.toHexString(parsedArgs.permittedCapabilities) +
                    ", effective=0x" + Long.toHexString(parsedArgs.effectiveCapabilities));
        }
    
        applyUidSecurityPolicy(parsedArgs, peer);
        applyInvokeWithSecurityPolicy(parsedArgs, peer);
    
        applyDebuggerSystemProperty(parsedArgs);
        applyInvokeWithSystemProperty(parsedArgs);
    
        int[][] rlimits = null;
    
        if (parsedArgs.rlimits != null) {
            rlimits = parsedArgs.rlimits.toArray(intArray2d);
        }
    
        int[] fdsToIgnore = null;
    
        if (parsedArgs.invokeWith != null) {
            try {
                FileDescriptor[] pipeFds = Os.pipe2(O_CLOEXEC);
                childPipeFd = pipeFds[1];
                serverPipeFd = pipeFds[0];
                Os.fcntlInt(childPipeFd, F_SETFD, 0);
                fdsToIgnore = new int[]{childPipeFd.getInt$(), serverPipeFd.getInt$()};
            } catch (ErrnoException errnoEx) {
                throw new IllegalStateException("Unable to set up pipe for invoke-with", errnoEx);
            }
        }
    
        /**
         * In order to avoid leaking descriptors to the Zygote child,
         * the native code must close the two Zygote socket descriptors
         * in the child process before it switches from Zygote-root to
         * the UID and privileges of the application being launched.
         *
         * In order to avoid "bad file descriptor" errors when the
         * two LocalSocket objects are closed, the Posix file
         * descriptors are released via a dup2() call which closes
         * the socket and substitutes an open descriptor to /dev/null.
         */
    
        int [] fdsToClose = { -1, -1 };
    
        FileDescriptor fd = mSocket.getFileDescriptor();
    
        if (fd != null) {
            fdsToClose[0] = fd.getInt$();
        }
    
        fd = zygoteServer.getServerSocketFileDescriptor();
    
        if (fd != null) {
            fdsToClose[1] = fd.getInt$();
        }
    
        fd = null;
    
        pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
                parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal, parsedArgs.seInfo,
                parsedArgs.niceName, fdsToClose, fdsToIgnore, parsedArgs.instructionSet,
                parsedArgs.appDataDir);
    
        try {
            if (pid == 0) {
                // in child
                zygoteServer.setForkChild();
    
                zygoteServer.closeServerSocket();
                IoUtils.closeQuietly(serverPipeFd);
                serverPipeFd = null;
    
                return handleChildProc(parsedArgs, descriptors, childPipeFd);
            } else {
                // In the parent. A pid < 0 indicates a failure and will be handled in
                // handleParentProc.
                IoUtils.closeQuietly(childPipeFd);
                childPipeFd = null;
                handleParentProc(pid, descriptors, serverPipeFd);
                return null;
            }
        } finally {
            IoUtils.closeQuietly(childPipeFd);
            IoUtils.closeQuietly(serverPipeFd);
        }
    }
    

    接收客户端发送过来的connect()操作,Zygote作为服务端执行accept()操作。 再后面客户端调用write()写数据,Zygote进程调用read()读数据。没有连接请求时会进入休眠状态,当有创建新进程的连接请求时,唤醒Zygote进程,创建Socket通道ZygoteConnection,然后执行ZygoteConnection的processOneCommand()方法。

    Zygote总结:

    解析init.zygote.rc中的参数,创建AppRuntime并调用AppRuntime.start()方法
    调用AndroidRuntime的startVM()方法创建虚拟机,再调用startReg()注册JNI函数
    通过JNI方式调用ZygoteInit.main(),第一次进入Java世界
    registerZygoteSocket()建立socket通道,zygote作为通信的服务端,用于响应客户端请求
    preload()预加载通用类、drawable和color资源、openGL以及共享库以及WebView,用于提高app启动效率
    通过startSystemServer(),fork得力帮手system_server进程,
    调用runSelectLoop(),随时待命,当接收到请求创建新进程请求时立即唤醒并执行相应工作

    System Server 进程

    巴拉巴拉一大堆,通过调用startSystemServer去fork system server process

      /**
     * Prepare the arguments and fork for the system server process.
     */
    private static boolean startSystemServer(String abiList, String socketName, ZygoteServer zygoteServer)
            throws Zygote.MethodAndArgsCaller, RuntimeException {
        long capabilities = posixCapabilitiesAsBits(
            OsConstants.CAP_IPC_LOCK,
            OsConstants.CAP_KILL,
            OsConstants.CAP_NET_ADMIN,
            OsConstants.CAP_NET_BIND_SERVICE,
            OsConstants.CAP_NET_BROADCAST,
            OsConstants.CAP_NET_RAW,
            OsConstants.CAP_SYS_MODULE,
            OsConstants.CAP_SYS_NICE,
            OsConstants.CAP_SYS_PTRACE,
            OsConstants.CAP_SYS_TIME,
            OsConstants.CAP_SYS_TTY_CONFIG,
            OsConstants.CAP_WAKE_ALARM
        );
        /* Containers run without this capability, so avoid setting it in that case */
        if (!SystemProperties.getBoolean(PROPERTY_RUNNING_IN_CONTAINER, false)) {
            capabilities |= posixCapabilitiesAsBits(OsConstants.CAP_BLOCK_SUSPEND);
        }
        /* Hardcoded command line to start the system server */
        String args[] = {
            "--setuid=1000",
            "--setgid=1000",
            "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,1032,3001,3002,3003,3006,3007,3009,3010",
            "--capabilities=" + capabilities + "," + capabilities,
            "--nice-name=system_server",
            "--runtime-args",
            "com.android.server.SystemServer",
        };
        ZygoteConnection.Arguments parsedArgs = null;
    
        int pid;
    
        try {
            parsedArgs = new ZygoteConnection.Arguments(args);
            ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
            ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);
    
            /* Request to fork the system server process */
            pid = Zygote.forkSystemServer(
                    parsedArgs.uid, parsedArgs.gid,
                    parsedArgs.gids,
                    parsedArgs.debugFlags,
                    null,
                    parsedArgs.permittedCapabilities,
                    parsedArgs.effectiveCapabilities);
        } catch (IllegalArgumentException ex) {
            throw new RuntimeException(ex);
        }
    
        /* For child process */
        if (pid == 0) {
            if (hasSecondZygote(abiList)) {
                waitForSecondaryZygote(socketName);
            }
    
            zygoteServer.closeServerSocket();
            handleSystemServerProcess(parsedArgs);
        }
    
        return true;
    }   
    

    Zygote.forkSystemServer

      public static int forkSystemServer(int uid, int gid, int[] gids, int debugFlags,
            int[][] rlimits, long permittedCapabilities, long effectiveCapabilities) {
        VM_HOOKS.preFork();
        // Resets nice priority for zygote process.
        resetNicePriority();
        
         // 调用native方法fork system_server进程
        int pid = nativeForkSystemServer(
                uid, gid, gids, debugFlags, rlimits, permittedCapabilities, effectiveCapabilities);
        // Enable tracing as soon as we enter the system_server.
        if (pid == 0) {
            Trace.setTracingEnabled(true, debugFlags);
        }
        VM_HOOKS.postForkCommon();
        return pid;
    }
    

    nativeForkSystemServer()方法在AndroidRuntime.cpp中注册的(com_android_internal_os_Zygote),调用com_android_internal_os_Zygote.cpp中的register_com_android_internal_os_Zygote()方法建立native方法的映射关系,接下来进入如下方法

        static jint com_android_internal_os_Zygote_nativeForkSystemServer(
        JNIEnv* env, jclass, uid_t uid, gid_t gid, jintArray gids,
        jint debug_flags, jobjectArray rlimits, jlong permittedCapabilities,
        jlong effectiveCapabilities) {
       pid_t pid = ForkAndSpecializeCommon(env, uid, gid, gids,
                                      debug_flags, rlimits,
                                      permittedCapabilities, effectiveCapabilities,
                                      MOUNT_EXTERNAL_DEFAULT, NULL, NULL, true, NULL,
                                      NULL, NULL, NULL);
     if (pid > 0) {
      // The zygote process checks whether the child process has died or not.
      ALOGI("System server process %d has been created", pid);
      gSystemServerPid = pid;
      // There is a slight window that the system server process has crashed
      // but it went unnoticed because we haven't published its pid yet. So
      // we recheck here just to make sure that all is well.
      int status;
      if (waitpid(pid, &status, WNOHANG) == pid) {
          ALOGE("System server process %d has died. Restarting Zygote!", pid);
          RuntimeAbort(env, __LINE__, "System server process has died. Restarting Zygote!");
         }
      }
       return pid;
      }    
    
    
      
      
      
      
      
      
      
      // Utility routine to fork zygote and specialize the child process.
     static pid_t ForkAndSpecializeCommon(JNIEnv* env, uid_t uid, gid_t gid, jintArray javaGids,
                                     jint debug_flags, jobjectArray javaRlimits,
                                     jlong permittedCapabilities, jlong effectiveCapabilities,
                                     jint mount_external,
                                     jstring java_se_info, jstring java_se_name,
                                     bool is_system_server, jintArray fdsToClose,
                                     jintArray fdsToIgnore,
                                     jstring instructionSet, jstring dataDir) {
     SetSigChldHandler();
    
     sigset_t sigchld;
     sigemptyset(&sigchld);
     sigaddset(&sigchld, SIGCHLD);
    
     // Temporarily block SIGCHLD during forks. The SIGCHLD handler might
     // log, which would result in the logging FDs we close being reopened.
     // This would cause failures because the FDs are not whitelisted.
    //
     // Note that the zygote process is single threaded at this point.
     if (sigprocmask(SIG_BLOCK, &sigchld, nullptr) == -1) {
    ALOGE("sigprocmask(SIG_SETMASK, { SIGCHLD }) failed: %s", strerror(errno));
    RuntimeAbort(env, __LINE__, "Call to sigprocmask(SIG_BLOCK, { SIGCHLD }) failed.");
       }
    
    
      std::vector<int> fds_to_ignore;
       FillFileDescriptorVector(env, fdsToIgnore, &fds_to_ignore);
     if (gOpenFdTable == NULL) {
    gOpenFdTable = FileDescriptorTable::Create(fds_to_ignore);
    if (gOpenFdTable == NULL) {
      RuntimeAbort(env, __LINE__, "Unable to construct file descriptor table.");
    }
     } else if (!gOpenFdTable->Restat(fds_to_ignore)) {
    RuntimeAbort(env, __LINE__, "Unable to restat file descriptor table.");
    }
    
    pid_t pid = fork();
    
    if (pid == 0) {
    // The child process.
    gMallocLeakZygoteChild = 1;
    
    // Set the jemalloc decay time to 1.
    mallopt(M_DECAY_TIME, 1);
    
    // Clean up any descriptors which must be closed immediately
    DetachDescriptors(env, fdsToClose);
    
    // Re-open all remaining open file descriptors so that they aren't shared
    // with the zygote across a fork.
    if (!gOpenFdTable->ReopenOrDetach()) {
      RuntimeAbort(env, __LINE__, "Unable to reopen whitelisted descriptors.");
    }
    
    if (sigprocmask(SIG_UNBLOCK, &sigchld, nullptr) == -1) {
      ALOGE("sigprocmask(SIG_SETMASK, { SIGCHLD }) failed: %s", strerror(errno));
      RuntimeAbort(env, __LINE__, "Call to sigprocmask(SIG_UNBLOCK, { SIGCHLD }) failed.");
    }
    
    // Keep capabilities across UID change, unless we're staying root.
    if (uid != 0) {
      EnableKeepCapabilities(env);
    }
    
    SetInheritable(env, permittedCapabilities);
    DropCapabilitiesBoundingSet(env);
    
    bool use_native_bridge = !is_system_server && (instructionSet != NULL)
        && android::NativeBridgeAvailable();
    if (use_native_bridge) {
      ScopedUtfChars isa_string(env, instructionSet);
      use_native_bridge = android::NeedsNativeBridge(isa_string.c_str());
    }
    if (use_native_bridge && dataDir == NULL) {
      // dataDir should never be null if we need to use a native bridge.
      // In general, dataDir will never be null for normal applications. It can only happen in
      // special cases (for isolated processes which are not associated with any app). These are
      // launched by the framework and should not be emulated anyway.
      use_native_bridge = false;
      ALOGW("Native bridge will not be used because dataDir == NULL.");
    }
    
    if (!MountEmulatedStorage(uid, mount_external, use_native_bridge)) {
      ALOGW("Failed to mount emulated storage: %s", strerror(errno));
      if (errno == ENOTCONN || errno == EROFS) {
        // When device is actively encrypting, we get ENOTCONN here
        // since FUSE was mounted before the framework restarted.
        // When encrypted device is booting, we get EROFS since
        // FUSE hasn't been created yet by init.
        // In either case, continue without external storage.
      } else {
        RuntimeAbort(env, __LINE__, "Cannot continue without emulated storage");
      }
    }
    
    if (!is_system_server) {
        int rc = createProcessGroup(uid, getpid());
        if (rc != 0) {
            if (rc == -EROFS) {
                ALOGW("createProcessGroup failed, kernel missing CONFIG_CGROUP_CPUACCT?");
            } else {
                ALOGE("createProcessGroup(%d, %d) failed: %s", uid, pid, strerror(-rc));
            }
        }
    }
    
    SetGids(env, javaGids);
    
    SetRLimits(env, javaRlimits);
    
    if (use_native_bridge) {
      ScopedUtfChars isa_string(env, instructionSet);
      ScopedUtfChars data_dir(env, dataDir);
      android::PreInitializeNativeBridge(data_dir.c_str(), isa_string.c_str());
    }
    
    int rc = setresgid(gid, gid, gid);
    if (rc == -1) {
      ALOGE("setresgid(%d) failed: %s", gid, strerror(errno));
      RuntimeAbort(env, __LINE__, "setresgid failed");
    }
    
    rc = setresuid(uid, uid, uid);
    if (rc == -1) {
      ALOGE("setresuid(%d) failed: %s", uid, strerror(errno));
      RuntimeAbort(env, __LINE__, "setresuid failed");
    }
    
    if (NeedsNoRandomizeWorkaround()) {
        // Work around ARM kernel ASLR lossage (http://b/5817320).
        int old_personality = personality(0xffffffff);
        int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE);
        if (new_personality == -1) {
            ALOGW("personality(%d) failed: %s", new_personality, strerror(errno));
        }
    }
    
    SetCapabilities(env, permittedCapabilities, effectiveCapabilities, permittedCapabilities);
    
    SetSchedulerPolicy(env);
    
    const char* se_info_c_str = NULL;
    ScopedUtfChars* se_info = NULL;
    if (java_se_info != NULL) {
        se_info = new ScopedUtfChars(env, java_se_info);
        se_info_c_str = se_info->c_str();
        if (se_info_c_str == NULL) {
          RuntimeAbort(env, __LINE__, "se_info_c_str == NULL");
        }
    }
    const char* se_name_c_str = NULL;
    ScopedUtfChars* se_name = NULL;
    if (java_se_name != NULL) {
        se_name = new ScopedUtfChars(env, java_se_name);
        se_name_c_str = se_name->c_str();
        if (se_name_c_str == NULL) {
          RuntimeAbort(env, __LINE__, "se_name_c_str == NULL");
        }
    }
    rc = selinux_android_setcontext(uid, is_system_server, se_info_c_str, se_name_c_str);
    if (rc == -1) {
      ALOGE("selinux_android_setcontext(%d, %d, \"%s\", \"%s\") failed", uid,
            is_system_server, se_info_c_str, se_name_c_str);
      RuntimeAbort(env, __LINE__, "selinux_android_setcontext failed");
    }
    
    // Make it easier to debug audit logs by setting the main thread's name to the
    // nice name rather than "app_process".
    if (se_info_c_str == NULL && is_system_server) {
      se_name_c_str = "system_server";
    }
    if (se_info_c_str != NULL) {
      SetThreadName(se_name_c_str);
    }
    
    delete se_info;
    delete se_name;
    
    UnsetSigChldHandler();
    
    env->CallStaticVoidMethod(gZygoteClass, gCallPostForkChildHooks, debug_flags,
                              is_system_server, instructionSet);
    if (env->ExceptionCheck()) {
      RuntimeAbort(env, __LINE__, "Error calling post fork hooks.");
    }
    } else if (pid > 0) {
    // the parent process
    
    // We blocked SIGCHLD prior to a fork, we unblock it here.
    if (sigprocmask(SIG_UNBLOCK, &sigchld, nullptr) == -1) {
      ALOGE("sigprocmask(SIG_SETMASK, { SIGCHLD }) failed: %s", strerror(errno));
      RuntimeAbort(env, __LINE__, "Call to sigprocmask(SIG_UNBLOCK, { SIGCHLD }) failed.");
     }
     }
      return pid;
       }
     }  // anonymous namespace    
    

    fork()采用copy on write技术,这是linux创建进程的标准方法,调用一次,返回两次,返回值有3种类型

    • 父进程中,fork返回新创建的子进程的pid;
    • 子进程中,fork返回0;
    • 当出现错误时,fork返回负数。(当进程数超过上限或者系统内存不足时会出错)

    主要工作是寻找空闲的进程号pid,然后从父进程拷贝进程信息,例如数据段和代码段,fork()后子进程要执行的代码等。 Zygote进程是所有Android进程的母体,包括system_server和各个App进程。zygote利用fork()方法生成新进程,对于新进程A复用Zygote进程本身的资源,再加上新进程A相关的资源,构成新的应用进程A ,fork之后,操作系统会复制一个与父进程完全相同的子进程,虽说是父子关系,但是在操作系统看来,他们更像兄弟关系,这2个进程共享代码空间,但是数据空间是互相独立的,子进程数据空间中的内容是父进程的完整拷贝,指令指针也完全相同,子进程拥有父进程当前运行到的位置(两进程的程序计数器pc值相同,也就是说,子进程是从fork返回处开始执行的),但有一点不同,如果fork成功,子进程中fork的返回值是0,父进程中fork的返回值是子进程的进程号,如果fork不成功,父进程会返回错误。
    可以这样想象,2个进程一直同时运行,而且步调一致,在fork之后,他们就开始分别作不同的工作,正如fork原意【分支】一样

    system_server进程已完成了创建,接下来开始了system_server进程的工作。执行完forkSystemServer()后,新创建system_server进程便进入handleSystemServerProcess()
    首先会关闭Zygote的socket,并设置SystemServer进程的一些参数,然后调用RuntimeInit.java中的ZygoteInit函数。

       /**
     * Finish remaining work for the newly forked system server process.
     */
    private static void handleSystemServerProcess(
            ZygoteConnection.Arguments parsedArgs)
            throws Zygote.MethodAndArgsCaller {
    
        // set umask to 0077 so new files and directories will default to owner-only permissions.
        Os.umask(S_IRWXG | S_IRWXO);
    
        if (parsedArgs.niceName != null) {
            Process.setArgV0(parsedArgs.niceName);
        }
    
        final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
        if (systemServerClasspath != null) {
            performSystemServerDexOpt(systemServerClasspath);
            // Capturing profiles is only supported for debug or eng builds since selinux normally
            // prevents it.
            boolean profileSystemServer = SystemProperties.getBoolean(
                    "dalvik.vm.profilesystemserver", false);
            if (profileSystemServer && (Build.IS_USERDEBUG || Build.IS_ENG)) {
                try {
                    File profileDir = Environment.getDataProfilesDePackageDirectory(
                            Process.SYSTEM_UID, "system_server");
                    File profile = new File(profileDir, "primary.prof");
                    profile.getParentFile().mkdirs();
                    profile.createNewFile();
                    String[] codePaths = systemServerClasspath.split(":");
                    VMRuntime.registerAppInfo(profile.getPath(), codePaths);
                } catch (Exception e) {
                    Log.wtf(TAG, "Failed to set up system server profile", e);
                }
            }
        }
    
        if (parsedArgs.invokeWith != null) {
            String[] args = parsedArgs.remainingArgs;
            // If we have a non-null system server class path, we'll have to duplicate the
            // existing arguments and append the classpath to it. ART will handle the classpath
            // correctly when we exec a new process.
            if (systemServerClasspath != null) {
                String[] amendedArgs = new String[args.length + 2];
                amendedArgs[0] = "-cp";
                amendedArgs[1] = systemServerClasspath;
                System.arraycopy(args, 0, amendedArgs, 2, args.length);
                args = amendedArgs;
            }
    
            WrapperInit.execApplication(parsedArgs.invokeWith,
                    parsedArgs.niceName, parsedArgs.targetSdkVersion,
                    VMRuntime.getCurrentInstructionSet(), null, args);
        } else {
            ClassLoader cl = null;
            if (systemServerClasspath != null) {
                cl = createPathClassLoader(systemServerClasspath, parsedArgs.targetSdkVersion);
    
                Thread.currentThread().setContextClassLoader(cl);
            }
    
            /*
             * Pass the remaining arguments to SystemServer.
             */
            ZygoteInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
        }
    
        /* should never reach here */
    }
    

    调用 ZygoteInit.zygoteInit方法

     public static final void zygoteInit(int targetSdkVersion, String[] argv,
            ClassLoader classLoader) throws Zygote.MethodAndArgsCaller {
        if (RuntimeInit.DEBUG) {
            Slog.d(RuntimeInit.TAG, "RuntimeInit: Starting application from zygote");
        }
    
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ZygoteInit");
        RuntimeInit.redirectLogStreams();
    
        RuntimeInit.commonInit();
        ZygoteInit.nativeZygoteInit();
        RuntimeInit.applicationInit(targetSdkVersion, argv, classLoader);
    }
    

    最后看看 RuntimeInit.applicationInit;

      protected static void applicationInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
            throws Zygote.MethodAndArgsCaller {
        // If the application calls System.exit(), terminate the process
        // immediately without running any shutdown hooks.  It is not possible to
        // shutdown an Android application gracefully.  Among other things, the
        // Android runtime shutdown hooks close the Binder driver, which can cause
        // leftover running threads to crash before the process actually exits.
        nativeSetExitWithoutCleanup(true);
    
        // We want to be fairly aggressive about heap utilization, to avoid
        // holding on to a lot of memory that isn't needed.
        VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
        VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
    
        final Arguments args;
        try {
            args = new Arguments(argv);
        } catch (IllegalArgumentException ex) {
            Slog.e(TAG, ex.getMessage());
            // let the process exit
            return;
        }
    
        // The end of of the RuntimeInit event (see #zygoteInit).
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
    
        // Remaining arguments are passed to the start class's static main
        // // 调用com.android.server.SystemServer类的main函数
        invokeStaticMain(args.startClass, args.startArgs, classLoader);
    }
    

    通过反射机制调用的是SystemServer.main()方法,SystemServer.run函数中初始化各种服务

    // Start services.
        try {
            traceBeginAndSlog("StartServices");
            startBootstrapServices();
            startCoreServices();
            startOtherServices();
            SystemServerInitThreadPool.shutdown();
        } catch (Throwable ex) {
            Slog.e("System", "******************************************");
            Slog.e("System", "************ Failure starting system services", ex);
            throw ex;
        } finally {
            traceEnd();
        }
    

    system server进程总结:

    zygote进程通过Zygote.forkSystemServer —> fork.fork()创建system server进程
    调用ZygoteInit.handleSystemServerProcess方法设置当前进程名为"system_server",执行dex优化操作,一些属性的初始化,设置binder线程
    通过抛出MethodAndArgsCaller异常,回到ZygoteInit.main(),在try catch中执行MethodAndArgsCaller.run;在这里通过反射执行SystemServer.main()方法
    在SystemServer.run方法中做一些设置,比如初始化系统上下文 ,创建SystemServiceManager,启动引导服务,启动核心服务,启动其他服务
    最后调用Looper.loop(),轮询从消息队列取出消息处理。

    相关文章

      网友评论

        本文标题:Android系统 init--> zygote-->

        本文链接:https://www.haomeiwen.com/subject/iriwxqtx.html