美文网首页
面试总结(1)

面试总结(1)

作者: 洋_____ | 来源:发表于2018-02-26 15:16 被阅读0次

?xml version="1.0" encoding="UTF-8"?

1. @protocol 和 category 中如何使用 @property

在 protocol 中使用 property 只会生成 setter 和 getter 方法声明,我们使用属性的目的,是希望遵守我协议的对象能实现该属性

category 使用 @property 也是只会生成 setter 和 getter 方法的声明,如果我们真的需要给 category 增加属性的实现,需要借助于运行时的两个函数:

objc_setAssociatedObject

objc_getAssociatedObject

2. runtime 如何实现 weak 属性

要实现 weak 属性,首先要搞清楚 weak 属性的特点

weak 此特质表明该属性定义了一种“非拥有关系” (nonowning relationship)。为这种属性设置新值时,设置方法既不保留新值,也不释放旧值。此特质同 assign 类似, 然而在属性所指的对象遭到摧毁时,属性值也会清空(nil out)。

那么 runtime 如何实现 weak 变量的自动置nil?

runtime 对注册的类, 会进行布局,对于 weak 对象会放入一个 hash 表中。 用 weak 指向的对象内存地址作为 key,当此对象的引用计数为0的时候会 dealloc,假如 weak 指向的对象内存地址是a,那么就会以a为键, 在这个 weak 表中搜索,找到所有以a为键的 weak 对象,从而设置为 nil。

3. @property中有哪些属性关键字?/ @property 后面可以有哪些修饰符?

属性可以拥有的特质分为四类:

原子性--- nonatomic 特质

在默认情况下,由编译器合成的方法会通过锁定机制确保其原子性(atomicity)。如果属性具备 nonatomic 特质,则不使用自旋锁。请注意,尽管没有名为“atomic”的特质(如果某属性不具备 nonatomic 特质,那它就是“原子的” ( atomic) ),但是仍然可以在属性特质中写明这一点,编译器不会报错。若是自己定义存取方法,那么就应该遵从与属性特质相符的原子性。

读/写权限---readwrite(读写)、readonly (只读)

内存管理语义---assign、strong、 weak、unsafe_unretained、copy

方法名---getter= 、setter=

不常用的:nonnull,null_resettable,nullable

4. ARC下,不显式指定任何属性关键字时,默认的关键字都有哪些?

对应基本数据类型默认关键字是 atomic,readwrite,assign

   2. 对于普通的 Objective-C 对象 atomic,readwrite,strong

5. @synthesize和@dynamic分别有什么作用?

@property有两个对应的词,一个是 @synthesize,一个是 @dynamic。如果 @synthesize和 @dynamic都没写,那么默认的就是@syntheszie var = _var;

@synthesize 的语义是如果你没有手动实现 setter 方法和 getter 方法,那么编译器会自动为你加上这两个方法。

@dynamic 告诉编译器:属性的 setter 与 getter 方法由用户自己实现,不自动生成。(当然对于 readonly 的属性只需提供 getter 即可)。假如一个属性被声明为 @dynamic var,然后你没有提供 @setter方法和 @getter 方法,编译的时候没问题,但是当程序运行到 instance.var = someVar,由于缺 setter 方法会导致程序崩溃;或者当运行到 someVar = var 时,由于缺 getter 方法同样会导致崩溃。编译时没问题,运行时才执行相应的方法,这就是所谓的动态绑定。

当你在子类中重载了父类中的属性,你必须 使用 @synthesize 来手动合成ivar。

6. 用@property声明的NSString(或NSArray,NSDictionary)经常使用copy关键字,为什么?如果改用strong关键字,可能造成什么问题?

因为父类指针可以指向子类对象,使用 copy 的目的是为了让本对象的属性不受外界影响,使用 copy 无论给我传入是一个可变对象还是不可对象,我本身持有的就是一个不可变的副本.

如果我们使用是 strong ,那么这个属性就有可能指向一个可变对象,如果这个可变对象在外部被修改了,那么会影响该属性.

copy 此特质所表达的所属关系与 strong 类似。然而设置方法并不保留新值,而是将其“拷贝” (copy)。 当属性类型为 NSString 时,经常用此特质来保护其封装性,因为传递给设置方法的新值有可能指向一个 NSMutableString 类的实例。这个类是 NSString 的子类,表示一种可修改其值的字符串,此时若是不拷贝字符串,那么设置完属性之后,字符串的值就可能会在对象不知情的情况下遭人更改。所以,这时就要拷贝一份“不可变” (immutable)的字符串,确保对象中的字符串值不会无意间变动。只要实现属性所用的对象是“可变的” (mutable),就应该在设置新属性值时拷贝一份。

举例说明:

定义一个以 strong 修饰的 array:

@property (nonatomic ,readwrite, strong)NSArray*array;

然后进行下面的操作:

  NSArray*array = @[ @1, @2, @3, @4];

  NSMutableArray*mutableArray = [NSMutableArrayarrayWithArray:array];

   self.array = mutableArray;

   [mutableArrayremoveAllObjects];;

  NSLog(@"%@",self.array);

   [mutableArrayaddObjectsFromArray:array];

   self.array = [mutableArraycopy];

   [mutableArrayremoveAllObjects];;

  NSLog(@"%@",self.array);

打印结果如下所示:

2015-09-2719:10:32.523CYLArrayCopyDmo[10681:713670] (

)

2015-09-2719:10:32.524CYLArrayCopyDmo[10681:713670] (

  1,

  2,

  3,

  4

)

(详见仓库内附录的 Demo。)

为了理解这种做法,首先要知道,两种情况:

对非集合类对象的 copy 与 mutableCopy 操作;

对集合类对象的 copy 与 mutableCopy 操作。

1. 对非集合类对象的copy操作:

在非集合类对象中:对 immutable 对象进行 copy 操作,是指针复制,mutableCopy 操作时内容复制;对 mutable 对象进行 copy 和 mutableCopy 都是内容复制。用代码简单表示如下:

[immutableObject copy] // 浅复制

[immutableObject mutableCopy] //深复制

[mutableObject copy] //深复制

[mutableObject mutableCopy] //深复制

比如以下代码:

NSMutableString*string = [NSMutableStringstringWithString:@"origin"];//copy

NSString*stringCopy = [stringcopy];

查看内存,会发现 string、stringCopy 内存地址都不一样,说明此时都是做内容拷贝、深拷贝。即使你进行如下操作:

[stringappendString:@"origion!"]

stringCopy 的值也不会因此改变,但是如果不使用 copy,stringCopy 的值就会被改变。 集合类对象以此类推。 所以,

用 @property 声明 NSString、NSArray、NSDictionary 经常使用 copy 关键字,是因为他们有对应的可变类型:NSMutableString、NSMutableArray、NSMutableDictionary,他们之间可能进行赋值操作,为确保对象中的字符串值不会无意间变动,应该在设置新属性值时拷贝一份。

2、集合类对象的copy与mutableCopy

集合类对象是指 NSArray、NSDictionary、NSSet ... 之类的对象。下面先看集合类immutable对象使用 copy 和 mutableCopy 的一个例子:

NSArray*array = @[@[@"a",@"b"], @[@"c",@"d"]];

NSArray*copyArray = [arraycopy];

NSMutableArray*mCopyArray = [arraymutableCopy];

查看内容,可以看到 copyArray 和 array 的地址是一样的,而 mCopyArray 和 array 的地址是不同的。说明 copy 操作进行了指针拷贝,mutableCopy 进行了内容拷贝。但需要强调的是:此处的内容拷贝,仅仅是拷贝 array 这个对象,array 集合内部的元素仍然是指针拷贝。这和上面的非集合 immutable 对象的拷贝还是挺相似的,那么mutable对象的拷贝会不会类似呢?我们继续往下,看 mutable 对象拷贝的例子:

NSMutableArray*array = [NSMutableArrayarrayWithObjects:[NSMutableStringstringWithString:@"a"],@"b",@"c",nil];

NSArray*copyArray = [arraycopy];

NSMutableArray*mCopyArray = [arraymutableCopy];

查看内存,如我们所料,copyArray、mCopyArray和 array 的内存地址都不一样,说明 copyArray、mCopyArray 都对 array 进行了内容拷贝。同样,我们可以得出结论:

在集合类对象中,对 immutable 对象进行 copy,是指针复制, mutableCopy 是内容复制;对 mutable 对象进行 copy 和 mutableCopy 都是内容复制。但是:集合对象的内容复制仅限于对象本身,对象元素仍然是指针复制。用代码简单表示如下:

[immutableObjectcopy]//浅复制

[immutableObjectmutableCopy]//单层深复制

[mutableObjectcopy]//单层深复制

[mutableObjectmutableCopy]//单层深复制

这个代码结论和非集合类的非常相似。

参考链接:iOS 集合的深复制与浅复制

7.[selfclass]、[superclass]下面的代码输出什么?

  @implementationSon:Father

   - (id)init

   {

       self = [superinit];

      if(self) {

          NSLog(@"%@",NSStringFromClass([selfclass]));

          NSLog(@"%@",NSStringFromClass([superclass]));

       }

      returnself;

   }

  @end

答案:

都输出 Son

NSStringFromClass([self class]) = Son

NSStringFromClass([super class]) = Son

这个题目主要是考察关于 Objective-C 中对 self 和 super 的理解。

我们都知道:self 是类的隐藏参数,指向当前调用方法的这个类的实例。那 super 呢?

很多人会想当然的认为“ super 和 self 类似,应该是指向父类的指针吧!”。这是很普遍的一个误区。其实 super 是一个 Magic Keyword, 它本质是一个编译器标示符,和 self 是指向的同一个消息接受者!他们两个的不同点在于:super 会告诉编译器,调用 class 这个方法时,要去父类的方法,而不是本类里的。

上面的例子不管调用[self class]还是[super class],接受消息的对象都是当前 Son *xxx 这个对象。

当使用 self 调用方法时,会从当前类的方法列表中开始找,如果没有,就从父类中再找;而当使用 super 时,则从父类的方法列表中开始找。然后调用父类的这个方法。

这也就是为什么说“不推荐在 init 方法中使用点语法”,如果想访问实例变量 iVar 应该使用下划线( _iVar ),而非点语法( self.iVar )。

8. objc中的类方法和实例方法有什么本质区别和联系?

类方法:

类方法是属于类对象的

类方法只能通过类对象调用

类方法中的self是类对象

类方法可以调用其他的类方法

类方法中不能访问成员变量

类方法中不能直接调用对象方法

实例方法:

实例方法是属于实例对象的

实例方法只能通过实例对象调用

实例方法中的self是实例对象

实例方法中可以访问成员变量

实例方法中直接调用实例方法

实例方法中也可以调用类方法(通过类名)

9. 能否向编译后得到的类中增加实例变量?能否向运行时创建的类中添加实例变量?为什么?

不能向编译后得到的类中增加实例变量;

能向运行时创建的类中添加实例变量;

解释下:

因为编译后的类已经注册在 runtime 中,类结构体中的 objc_ivar_list 实例变量的链表 和 instance_size 实例变量的内存大小已经确定,同时runtime 会调用 class_setIvarLayout 或 class_setWeakIvarLayout 来处理 strong weak 引用。所以不能向存在的类中添加实例变量;

运行时创建的类是可以添加实例变量,调用 class_addIvar 函数。但是得在调用 objc_allocateClassPair 之后,objc_registerClassPair 之前,原因同上。

10. objc使用什么机制管理对象内存?

通过 retainCount 的机制来决定对象是否需要释放。 每次 runloop 的时候,都会检查对象的 retainCount,如果retainCount 为 0,说明该对象没有地方需要继续使用了,可以释放掉了。

11. 不手动指定autoreleasepool的前提下,一个autorealese对象在什么时刻释放?(比如在一个vc的viewDidLoad中创建)

分两种情况:手动干预释放时机、系统自动去释放。

手动干预释放时机--指定autoreleasepool 就是所谓的:当前作用域大括号结束时释放。

系统自动去释放--不手动指定autoreleasepool

Autorelease对象出了作用域之后,会被添加到最近一次创建的自动释放池中,并会在当前的 runloop 迭代结束时释放。

从程序启动到加载完成是一个完整的运行循环,然后会停下来,等待用户交互,用户的每一次交互都会启动一次运行循环,来处理用户所有的点击事件、触摸事件。

我们都知道: 所有 autorelease 的对象,在出了作用域之后,会被自动添加到最近创建的自动释放池中。

但是如果每次都放进应用程序的 main.m 中的 autoreleasepool 中,迟早有被撑满的一刻。这个过程中必定有一个释放的动作。何时?

在一次完整的运行循环结束之前,会被销毁。

那什么时间会创建自动释放池?运行循环检测到事件并启动后,就会创建自动释放池。

子线程的 runloop 默认是不工作,无法主动创建,必须手动创建。

自定义的 NSOperation 和 NSThread 需要手动创建自动释放池。比如: 自定义的 NSOperation 类中的 main 方法里就必须添加自动释放池。否则出了作用域后,自动释放对象会因为没有自动释放池去处理它,而造成内存泄露。

但对于 blockOperation 和 invocationOperation 这种默认的Operation ,系统已经帮我们封装好了,不需要手动创建自动释放池。

@autoreleasepool 当自动释放池被销毁或者耗尽时,会向自动释放池中的所有对象发送 release 消息,释放自动释放池中的所有对象。

如果在一个vc的viewDidLoad中创建一个 Autorelease对象,那么该对象会在 viewDidAppear 方法执行前就被销毁了。

参考链接:《黑幕背后的Autorelease》

12. 在block内如何修改block外部变量?

默认情况下,在block中访问的外部变量是复制过去的,即:写操作不对原变量生效。但是你可以加上 __block 来让其写操作生效

真正的原因是这样的:

我们都知道:Block不允许修改外部变量的值,这里所说的外部变量的值,指的是栈中指针的内存地址。__block 所起到的作用就是只要观察到该变量被 block 所持有,就将“外部变量”在栈中的内存地址放到了堆中。进而在block内部也可以修改外部变量的值。

__block 关键字修饰后,int类型也从4字节变成了32字节

这里的a已经由基本数据类型,变成了对象类型。block会对对象类型的指针进行copy,copy到堆中,但并不会改变该指针所指向的堆中的地址,所以在上面的示例代码中,block体内修改的实际是a指向的堆中的内容。

13. 使用系统的某些block api(如UIView的block版本写动画时),是否也考虑引用循环问题?

注:所谓“引用循环”是指双向的强引用,所以那些“单向的强引用”(block 强引用 self )没有问题如果你使用一些参数中可能含有 ivar 的系统 api 则要考虑到循环引用

系统的某些block api中,UIView的block版本写动画时不需要考虑,但也有一些api 需要考虑:

所谓“引用循环”是指双向的强引用,所以那些“单向的强引用”(block 强引用 self )没有问题,比如这些:

[UIViewanimateWithDuration:durationanimations:^{ [self.superviewlayoutIfNeeded]; }];

[[NSOperationQueuemainQueue]addOperationWithBlock:^{ self.someProperty= xyz; }];

[[NSNotificationCenterdefaultCenter]addObserverForName:@"someNotification"

                                                object:nil

                         queue:[NSOperationQueuemainQueue]

                                            usingBlock:^(NSNotification* notification) {

                                                   self.someProperty= xyz; }];

这些情况不需要考虑“引用循环”。

但如果你使用一些参数中可能含有 ivar 的系统 api ,如 GCD 、NSNotificationCenter就要小心一点:比如GCD 内部如果引用了 self,而且 GCD 的其他参数是 ivar,则要考虑到循环引用:

__weak__typeof__(self) weakSelf = self;

dispatch_group_async(_operationsGroup, _operationsQueue, ^

{

__typeof__(self) strongSelf = weakSelf;

[strongSelfdoSomething];

[strongSelfdoSomethingElse];

} );

类似的:

__weak__typeof__(self) weakSelf = self;

_observer = [[NSNotificationCenterdefaultCenter]addObserverForName:@"testKey"

                                                              object:nil

                                                               queue:nil

                                                          usingBlock:^(NSNotification*note) {

    __typeof__(self) strongSelf = weakSelf;

     [strongSelfdismissModalViewControllerAnimated:YES];

}];

self --> _observer --> block --> self 显然这也是一个循环引用。

检测代码中是否存在循环引用问题,可使用 Facebook 开源的一个检测工具  FBRetainCycleDetector 。

14、 KVC的keyPath中的集合运算符

KVC中的集合运算符有以下三类:

        1、简单集合运算符:@avg、@sum、@max、@min、@count (只能用在集合对象中,对象属性必须为数字类型)

    2、对象操作符:

               @unionOfObjects:返回指定属性的值的数组,不去重

               @distinctUnionOfObjects:返回指定属性去重后的值的数组

    3、数组 / 集体操作符:跟对象操作符很相似,只不过是在NSArray和NSSet所组成的集合中工作的。

               @unionOfArrays:返回一个数组,值由各个子数组的元素组成,不去重

               @distinctUnionOfArrays:返回一个数组,值由各个子数组的元素组成,去重

               @distinctUnionOfSets:和@distinctUnionOfArrays差不多, 只是它期望的是一个包含着NSSet对象的NSSet,并且会返回一个NSSet对象。因为集合不能有重复的值,所以只有distinct操作。

15、线程与进程的区别和联系? 

进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。 

进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。

进程(process)是一块包含了某些资源的内存区域。操作系统利用进程把它的工作划分为一些功能单元。

进程中所包含的一个或多个执行单元称为线程(thread)。进程还拥有一个私有的虚拟地址空间,该空间仅能被它所包含的线程访问。

通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源。

在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。

由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度。

简而言之,一个程序至少有一个进程,一个进程至少有一个线程.一个程序就是一个进程,而一个程序中的多个任务则被称为线程。

线程只能归属于一个进程并且它只能访问该进程所拥有的资源。当操作系统创建一个进程后,该进程会自动申请一个名为主线程或首要线程的线程。应用程序(application)是由一个或多个相互协作的进程组成的。

另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位.

线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.

一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行.

堆: 是大家共有的空间,分全局堆和局部堆。全局堆就是所有没有分配的空间,局部堆就是用户分配的空间。堆在操作系统对进程初始化的时候分配,运行过程中也可以向系统要额外的堆,但是记得用完了要还给操作系统,要不然就是内存泄漏。

栈:是个线程独有的,保存其运行状态和局部自动变量的。栈在线程开始的时候初始化,每个线程的栈互相独立,因此,栈是 thread safe的。每个C ++对象的数据成员也存在在栈中,每个函数都有自己的栈,栈被用来在函数之间传递参数。操作系统在切换线程的时候会自动的切换栈,就是切换 SS/ESP寄存器。栈空间不需要在高级语言里面显式的分配和释放。

16、堆和栈的区别

管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。 

申请大小: 

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。 

碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出 

分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。 

分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的。

注(自己):对象在堆,对象指针在栈  基本常量在栈

17、层和UIView的区别是什么?

答:两者最大的区别是,图层不会直接渲染到屏幕上,UIView是iOS系统中界面元素的基础,所有的界面元素都是继承自它。它本身完全是由CoreAnimation来实现的。它真正的绘图部分,是由一个CALayer类来管理。UIView本身更像是一个CALayer的管理器。一个UIView上可以有n个CALayer,每个layer显示一种东西,增强UIView的展现能力。

对比CALayer,UIView多了一个事件处理的功能。CALayer的性能会高一些,因为它少了事件处理的功能,更加轻量级

关闭隐式动画:

[CATransactionbegin];

[CATransactionsetDisableActions:YES];

self.myview.layer.position =CGPointMake(10,10);

[CATransactioncommit];

18、HTTP协议详解

HTTP是一个属于应用层的面向对象的协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统。目前在WWW中使用的是HTTP/1.0的第六版,HTTP/1.1的规范化工作正在进行之中。

 http(超文本传输协议)是一个基于请求与响应模式的、无状态的、应用层的协议,常基于TCP的连接方式,HTTP1.1版本中给出一种持续连接的机制,绝大多数的Web开发,都是构建在HTTP协议之上的Web应用。

HTTP协议的主要特点可概括如下:

1.支持客户/服务器模式。

2.简单快速:客户向服务器请求服务时,只需传送请求方法和路径。请求方法常用的有GET、HEAD、POST。每种方法规定了客户与服务器联系的类型不同。由于HTTP协议简单,使得HTTP服务器的程序规模小,因而通信速度很快。

3.灵活:HTTP允许传输任意类型的数据对象。正在传输的类型由Content-Type加以标记。

4.无连接:无连接的含义是限制每次连接只处理一个请求。服务器处理完客户的请求,并收到客户的应答后,即断开连接。采用这种方式可以节省传输时间。

5.无状态:HTTP协议是无状态协议。无状态是指协议对于事务处理没有记忆能力。缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大。另一方面,在服务器不需要先前信息时它的应答就较快。

19、TCP/UDP区别联系

TCP---传输控制协议,提供的是面向连接、可靠的字节流服务。当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据。TCP提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端。 

UDP---用户数据报协议,是一个简单的面向数据报的运输层协议。UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。由于UDP在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快 

TCP(Transmission Control Protocol,传输控制协议)是基于连接的协议,也就是说,在正式收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来,我们来看看这三次对话的简单过程:1.主机A向主机B发出连接请求数据包;2.主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包;3.主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。 

UDP(User Data Protocol,用户数据报协议)是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去!  UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。 

tcp协议和udp协议的差别 

是否连接面向连接面向非连接 

传输可靠性可靠不可靠 

应用场合传输大量数据少量数据 

速度慢快

20、socket连接和http连接的区别

简单说,你浏览的网页(网址以http://开头)都是http协议传输到你的浏览器的, 而http是基于socket之上的。socket是一套完成tcp,udp协议的接口。

HTTP协议:简单对象访问协议,对应于应用层  ,HTTP协议是基于TCP连接的

tcp协议:    对应于传输层

ip协议:     对应于网络层 

TCP/IP是传输层协议,主要解决数据如何在网络中传输;而HTTP是应用层协议,主要解决如何包装数据。

Socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议。

http连接:http连接就是所谓的短连接,即客户端向服务器端发送一次请求,服务器端响应后连接即会断掉;

socket连接:socket连接就是所谓的长连接,理论上客户端和服务器端一旦建立起连接将不会主动断掉;但是由于各种环境因素可能会是连接断开,比如说:服务器端或客户端主机down了,网络故障,或者两者之间长时间没有数据传输,网络防火墙可能会断开该连接以释放网络资源。所以当一个socket连接中没有数据的传输,那么为了维持连接需要发送心跳消息~~具体心跳消息格式是开发者自己定义的

我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。我们在传输数据时,可以只使用(传输层)TCP/IP协议,但是那样的话,如果没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用到应用层协议,应用层协议有很多,比如HTTP、FTP、TELNET等,也可以自己定义应用层协议。WEB使用HTTP协议作应用层协议,以封装HTTP文本信息,然后使用TCP/IP做传输层协议将它发到网络上。

1)Socket是一个针对TCP和UDP编程的接口,你可以借助它建立TCP连接等等。而TCP和UDP协议属于传输层 。

  而http是个应用层的协议,它实际上也建立在TCP协议之上。 

 (HTTP是轿车,提供了封装或者显示数据的具体形式;Socket是发动机,提供了网络通信的能力。)

 2)Socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议。Socket的出现只是使得程序员更方便地使用TCP/IP协议栈而已,是对TCP/IP协议的抽象,从而形成了我们知道的一些最基本的函数接口。

21、什么是TCP连接的三次握手

第一次握手:客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。

握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去。断开连接时服务器和客户端均可以主动发起断开TCP连接的请求,断开过程需要经过“四次握手”(过程就不细写了,就是服务器和客户端交互,最终确定断开)

注:

TCP(Transmission Control Protocol)传输控制协议

TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接:

位码即tcp标志位,有6种标示:SYN(synchronous建立联机) ACK(acknowledgement 确认) PSH(push传送) FIN(finish结束) RST(reset重置) URG(urgent紧急)Sequence number(顺序号码) Acknowledge number(确认号码)

第一次握手:主机A发送位码为syn=1,随机产生seq number=1234567的数据包到服务器,主机B由SYN=1知道,A要求建立联机;

第二次握手:主机B收到请求后要确认联机信息,向A发送ack number=(主机A的seq+1),syn=1,ack=1,随机产生seq=7654321的包;

第三次握手:主机A收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,主机A会再发送ack number=(主机B的seq+1),ack=1,主机B收到后确认seq值与ack=1则连接建立成功。

22、利用Socket建立网络连接的步骤

建立Socket连接至少需要一对套接字,其中一个运行于客户端,称为ClientSocket ,另一个运行于服务器端,称为ServerSocket 。

套接字之间的连接过程分为三个步骤:服务器监听,客户端请求,连接确认。

1。服务器监听:服务器端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态,等待客户端的连接请求。

2。客户端请求:指客户端的套接字提出连接请求,要连接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器端套接字的地址和端口号,然后就向服务器端套接字提出连接请求。

3。连接确认:当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的描述发给客户端,一旦客户端确认了此描述,双方就正式建立连接。而服务器端套接字继续处于监听状态,继续接收其他客户端套接字的连接请求。

23、面向对象的基本特性、基本原则

三大特性:封装、继承、多态

五大基本原则:   单一职责原者

                                开放封闭原则

                                替换原则

                                依赖原则

                                接口分离原则

24、设计模式

一、单例模式(Singleton)

二、工厂模式(Factory)

        工厂模式是另一种常见的设计模式,本质上是使用方法来简化类的选择和初始化过程。

三、委托模式(Delegate)

        委托模式是 Cocoa 中十分常见的设计模式,在 Cocoa 库中被大量的使用。在 Objective-C 中,委托模式通常使用协议(protocol)来实现。

四、观察者模式(Observer)

        Cocoa 中提供了两种用于实现观察者模式的办法,一直是使用NSNotification,另一种是KVO(Key Value Observing)。

25、数据结构

逻辑结构包括:

        集合、线性结构、树形结构、图形结构。

存储结构包括:

        顺序存储结构、链式存储结构、索引存储结构、散列存储结构

例如:数组、栈、队列、链表、树、图、堆、散列表

常用结构

数组

在程序设计中,为了处理方便, 把具有相同类型的若干变量按有序的形式组织起来。这些按序排列的同类数据元素的集合称为数组。在C语言中, 数组属于构造数据类型。一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。因此按数组元素的类型不同,数组又可分为数值数组、字符数组、指针数组、结构数组等各种类别。

是只能在某一端插入和删除的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。

队列

一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列是按照“先进先出”或“后进后出”的原则组织数据的。队列中没有元素时,称为空队列。

链表

是一种物理存储单元上非连续、非顺序的存储结构,它既可以表示线性结构,也可以用于表示非线性结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。

是包含n(n>0)个结点的有穷集合K,且在K中定义了一个关系N,N满足 以下条件:

(1)有且仅有一个结点 K0,他对于关系N来说没有前驱,称K0为树的根结点。简称为根(root)。  (2)除K0外,K中的每个结点,对于关系N来说有且仅有一个前驱。

(3)K中各结点,对关系N来说可以有m个后继(m>=0)。

图是由结点的有穷集合V和边的集合E组成。其中,为了与树形结构加以区别,在图结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表示这两个顶点具有相邻关系。

在计算机科学中,堆是一种特殊的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。

散列表

若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表

26、KVO实现原理

简单理解:

1、基于runtime机制创建中间类

2、重写setter方法

-(void)setName:(NSString *)newName{

         [self willChangeValueForKey:@"name"]; //KVO 在调用存取方法之前总调用 

        [super setValue:newName forKey:@"name"]; //调用父类的存取方法

         [self didChangeValueForKey:@"name"]; //KVO 在调用存取方法之后总调用

}

详细过程:

KVO是基于runtime机制实现的

当某个类的属性对象第一次被观察时,系统就会在运行期动态地创建该类的一个派生类,在这个派生类中重写基类中任何被观察属性的setter 方法。派生类在被重写的setter方法内实现真正的通知机制

如果原类为Person,那么生成的派生类名为NSKVONotifying_Person

每个类对象中都有一个isa指针指向当前类,当一个类对象的第一次被观察,那么系统会偷偷将isa指针指向动态生成的派生类,从而在给被监控属性赋值时执行的是派生类的setter方法

键值观察通知依赖于NSObject 的两个方法: willChangeValueForKey: 和 didChangevlueForKey:;在一个被观察属性发生改变之前, willChangeValueForKey:一定会被调用,这就 会记录旧的值。而当改变发生后,didChangeValueForKey:会被调用,继而 observeValueForKey:ofObject:change:context: 也会被调用。

补充:KVO的这套实现机制中苹果还偷偷重写了class方法,让我们误认为还是使用的当前类,从而达到隐藏生成的派生类

27、UI刷新优化方式

函数节流:是确保函数特定的时间内至多执行一次。

函数防抖:是函数在特定的时间内不被再调用后执行。

相关文章

  • 求职准备

    1:知识点总结 2:项目总结 3:常见面试问题总结 4:公司筛选 5:安排面试行程 6:面试!!!

  • 阿里腾讯头条美团等iOS面试总结

    阿里iOS面试总结 头条iOS面试总结 腾讯iOS面试总结 百度iOS面试总结 美团iOS面试总结

  • 面试总结1

    写一个排序算法(冒泡、简单排序和二叉排序) hashmap,什么时候扩容 mysql的搜索引擎InnoDB、MYI...

  • 面试总结(1)

    Django自定义模板 在app应用下创建templatetags文件夹,如:users/templatetags...

  • 面试总结(1)

    ?xml version="1.0" encoding="UTF-8"? 1. @protocol 和 categ...

  • 面试总结1

    性能优化 [https://github.com/togethter/learnDic/blob/master/i...

  • 面试总结1

    1 React 生命周期 2 hooks(useState, useEffect, useContext,=> c...

  • java script 1

    1 史上最全的Javascript面试题总结 史上最全的Javascript面试题总结 1 未声明和未定义? 未声...

  • 2021-03-09

    面试总结 1.不要因为对方当时的否定而自降身份,若面试不匹配,尽量给面试官快速结束面试的理由,过后总结技能+经验+...

  • 面试问题整理

    面试总结 标签(空格分隔): 面试 XX公司面试总结 1.自我介绍2.做过的项目,遇到的问题,如何解决,能否有更好...

网友评论

      本文标题:面试总结(1)

      本文链接:https://www.haomeiwen.com/subject/snepaxtx.html