书名:代码本色:用编程模拟自然系统
作者:Daniel Shiffman
译者:周晗彬
ISBN:978-7-115-36947-5
第6章目录
6.6 流场
继续学习Reynolds的其他转向行为。
1、流场
-
把Processing窗口当做一个网格,每个单元格都有一个向量指向特定方向,这样的模型就是流场。在小车的移动过程中,它会说:“位于我下方的箭头就是我的所需速度!”
图6-14 -
在Reynolds的流场跟随模型中,小车应该能预测自己的未来位置,并使用未来位置对应的流场向量。但为了让例子更简单,我们只检查小车当前位置对应的流场向量。
2、Vehicle类
-
在为Vehicle类添加额外代码之前,我们应该先创建一个流场(FlowField)类,这是一个向量网格。二维数组是一种很方便的数据结构,可用于存放网格信息。
-
流场可用于多种效果的模拟,如不规则的风以及蜿蜒的河流等。用Perlin噪声计算向量的方向是一种有效的实现方式。流场向量的计算并没有绝对“正确”的方式,它完全取决于目标效果。
-
现在,我们有一个二维数组用于存放流场的所有向量。下面要做的就是在流场中查询小车的所需速度。假设小车正位于某个坐标,首先要将这个坐标除以网格的resolution。如果resolution等于10,小车的坐标是(100,50),我们就应该查询位于第10列和第5行的单元格。
-
由于小车可能离开Processing屏幕,所以我们还需要用constrain()函数确保它不会越界访问流场数组。最后,我们在流场(FlowField)类中加入一个lookup()函数——这个函数的参数是一个PVector对象(代表小车的位置),返回值是该位置的流场向量。
-
假设有一个流场对象flow,通过调用它的lookup()函数,我们就能获得小车在流场中的所需速度,再通过Reynolds的转向力公式(转向力 = 所需速度 - 当前速度),就能得到转向力。
3、示例
示例代码6-4 流场跟随
boolean debug = true;
// Flowfield object
FlowField flowfield;
// An ArrayList of vehicles
ArrayList<Vehicle> vehicles;
void setup() {
size(640, 360);
// Make a new flow field with "resolution" of 16
flowfield = new FlowField(20);
vehicles = new ArrayList<Vehicle>();
// Make a whole bunch of vehicles with random maxspeed and maxforce values
for (int i = 0; i < 120; i++) {
vehicles.add(new Vehicle(new PVector(random(width), random(height)), random(2, 5), random(0.1, 0.5)));
}
}
void draw() {
background(255);
// Display the flowfield in "debug" mode
if (debug) flowfield.display();
// Tell all the vehicles to follow the flow field
for (Vehicle v : vehicles) {
v.follow(flowfield);
v.run();
}
// Instructions
fill(0);
text("Hit space bar to toggle debugging lines.\nClick the mouse to generate a new flow field.",10,height-20);
}
void keyPressed() {
if (key == ' ') {
debug = !debug;
}
}
// Make a new flowfield
void mousePressed() {
flowfield.init();
}
FlowField.pde
class FlowField {
// A flow field is a two dimensional array of PVectors
PVector[][] field;
int cols, rows; // Columns and Rows
int resolution; // How large is each "cell" of the flow field
FlowField(int r) {
resolution = r;
// Determine the number of columns and rows based on sketch's width and height
cols = width/resolution;
rows = height/resolution;
field = new PVector[cols][rows];
init();
}
void init() {
// Reseed noise so we get a new flow field every time
noiseSeed((int)random(10000));
float xoff = 0;
for (int i = 0; i < cols; i++) {
float yoff = 0;
for (int j = 0; j < rows; j++) {
float theta = map(noise(xoff,yoff),0,1,0,TWO_PI);
// Polar to cartesian coordinate transformation to get x and y components of the vector
field[i][j] = new PVector(cos(theta),sin(theta));
yoff += 0.1;
}
xoff += 0.1;
}
}
// Draw every vector
void display() {
for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {
drawVector(field[i][j],i*resolution,j*resolution,resolution-2);
}
}
}
// Renders a vector object 'v' as an arrow and a position 'x,y'
void drawVector(PVector v, float x, float y, float scayl) {
pushMatrix();
float arrowsize = 4;
// Translate to position to render vector
translate(x,y);
stroke(0,100);
// Call vector heading function to get direction (note that pointing to the right is a heading of 0) and rotate
rotate(v.heading2D());
// Calculate length of vector & scale it to be bigger or smaller if necessary
float len = v.mag()*scayl;
// Draw three lines to make an arrow (draw pointing up since we've rotate to the proper direction)
line(0,0,len,0);
//line(len,0,len-arrowsize,+arrowsize/2);
//line(len,0,len-arrowsize,-arrowsize/2);
popMatrix();
}
PVector lookup(PVector lookup) {
int column = int(constrain(lookup.x/resolution,0,cols-1));
int row = int(constrain(lookup.y/resolution,0,rows-1));
return field[column][row].get();
}
}
Vehicle.pde
class Vehicle {
// The usual stuff
PVector position;
PVector velocity;
PVector acceleration;
float r;
float maxforce; // Maximum steering force
float maxspeed; // Maximum speed
Vehicle(PVector l, float ms, float mf) {
position = l.get();
r = 3.0;
maxspeed = ms;
maxforce = mf;
acceleration = new PVector(0,0);
velocity = new PVector(0,0);
}
public void run() {
update();
borders();
display();
}
// Implementing Reynolds' flow field following algorithm
// http://www.red3d.com/cwr/steer/FlowFollow.html
void follow(FlowField flow) {
// What is the vector at that spot in the flow field?
PVector desired = flow.lookup(position);
// Scale it up by maxspeed
desired.mult(maxspeed);
// Steering is desired minus velocity
PVector steer = PVector.sub(desired, velocity);
steer.limit(maxforce); // Limit to maximum steering force
applyForce(steer);
}
void applyForce(PVector force) {
// We could add mass here if we want A = F / M
acceleration.add(force);
}
// Method to update position
void update() {
// Update velocity
velocity.add(acceleration);
// Limit speed
velocity.limit(maxspeed);
position.add(velocity);
// Reset accelertion to 0 each cycle
acceleration.mult(0);
}
void display() {
// Draw a triangle rotated in the direction of velocity
float theta = velocity.heading2D() + radians(90);
fill(175);
stroke(0);
pushMatrix();
translate(position.x,position.y);
rotate(theta);
beginShape(TRIANGLES);
vertex(0, -r*2);
vertex(-r, r*2);
vertex(r, r*2);
endShape();
popMatrix();
}
// Wraparound
void borders() {
if (position.x < -r) position.x = width+r;
if (position.y < -r) position.y = height+r;
if (position.x > width+r) position.x = -r;
if (position.y > height+r) position.y = -r;
}
}
网友评论