===============队列===========
GCD三种创建队列的方法
(1)自己创建一个队列
第一个参数代表队列的名称,可以任意起名
第二个参数代表队列属于串行还是并行执行任务
串行队列一次只执行一个任务。一般用于按顺序同步访问,但我们可以创建任意数量的串行队列,各个串行队列之间是并发的。
并行队列的执行顺序与其加入队列的顺序相同。可以并发执行多个任务,但是执行完成的顺序是随机的。
//创建串行队列
let serial = DispatchQueue(label: "serialQueue1")
//创建并行队列
let concurrent = DispatchQueue(label: "concurrentQueue1", attributes: .concurrent)
(2)获取系统存在的全局队列
Global Dispatch Queue有4个执行优先级:
.userInitiated 高
.default 正常
.utility 低
.background 非常低的优先级(这个优先级只用于不太关心完成时间的真正的后台任务)
let globalQueue = DispatchQueue.global(qos: .default)
let gloabalQue = DispatchQueue.global()
(3)运行在主线程的Main Dispatch Queue
正如名称中的Main一样,这是在主线程里执行的队列。因为主线程只有一个,所有这自然是串行队列。一起跟UI有关的操作必须放在主线程中执行。
let mainQueue = DispatchQueue.main
============== 暂停或者继续队列==============
这两个函数是异步的,而且只在不同的blocks之间生效,对已经正在执行的任务没有影响。
suspend()后,追加到Dispatch Queue中尚未执行的任务在此之后停止执行。
而resume()则使得这些任务能够继续执行。
//创建并行队列
let conQueue = DispatchQueue(label: "concurrentQueue1", attributes: .concurrent)
//暂停一个队列
conQueue.suspend()
//继续队列
conQueue.resume()
===========延迟执行============
DispatchQueue.main.asyncAfter(deadline: DispatchTime.now()+2) {
}
========================取消正在等待执行的Block操作==========
如果需要取消正在等待执行的Block操作,我们可以先将这个Block封装到DispatchWorkItem对象中,然后对其发送cancle,来取消一个正在等待执行的block。
//将要执行的操作封装到DispatchWorkItem中
let task = DispatchWorkItem { print("after!") }
//延时2秒执行
DispatchQueue.main.asyncAfter(deadline: DispatchTime.now() + 2, execute: task)
//取消任务
task.cancel()
=========================同步异步=============
//全局队列(并发队列)异步执行,开多个线程,一起执行
DispatchQueue.global().async {
}
//全局队列(并发队列)同步执行,当前线程一个一个执行
DispatchQueue.global().sync {
}
//主队列异步,开一个线程(主线程在主队列上运行),在新线程上一个一个执行
DispatchQueue.main.async {
}
//延迟执行
DispatchQueue.main.asyncAfter(deadline: DispatchTime.now()+2) {
}
=========== 调度组===============
async(group:):用来监视一组block对象的完成,你可以同步或异步地监视
notify():用来汇总结果,所有任务结束汇总,不阻塞当前线程
wait():等待直到所有任务执行结束,中途不能取消,阻塞当前线程
队列组就是把任务放在DispatchGroup中(入组),当任务执行完毕时(出组),即当DispatchGroup中没有任务时,调用监听方法notify,注意:入组和出组一定要成对出现,有几个入组,就一定需要有几个出组。
// 创建一个队列组
let group = DispatchGroup()
// A任务入组
group.enter()
// A任务异步操作
DispatchQueue.global().async(group: group, execute: DispatchWorkItem(block: {
sleep(2)
print("download task A ...")
// 出组
group.leave()
}))
// B任务入组
group.enter()
// B任务异步操作
DispatchQueue.global().async(group: group, execute: DispatchWorkItem(block: {
sleep(2)
print("download task B ...")
// 出组
group.leave()
}))
// 主线程监听,只有当队列组中没有任务,才会执行闭包。如果多次调用该方法,每次都会去检查队列组中是否有任务,如果没有任务才执行
group.notify(queue: DispatchQueue.main) {
print("complete!")
}
//2,永久等待,直到所有任务执行结束,中途不能取消,阻塞当前线程
group.wait()
print("任务全部执行完成")
============concurrentPerform 指定次数的Block最加到队列中=========
DispatchQueue.concurrentPerform函数是sync函数和Dispatch Group的关联API。按指定的次数将指定的Block追加到指定的Dispatch Queue中,并等待全部处理执行结束。
因为concurrentPerform函数也与sync函数一样,会等待处理结束,因此推荐在async函数中异步执行concurrentPerform函数。concurrentPerform函数可以实现高性能的循环迭代。
//获取系统存在的全局队列
let queue = DispatchQueue.global(qos: .default)
//定义一个异步步代码块
queue.async {
//通过concurrentPerform,循环变量数组
DispatchQueue.concurrentPerform(iterations: 6) {(index) -> Void in
print(index)
}
//执行完毕,主线程更新
DispatchQueue.main.async {
print("done")
}
}
================信号量==================
DispatchSemaphore(value: ):用于创建信号量,可以指定初始化信号量计数值,这里我们默认1.
semaphore.wait():会判断信号量,如果为1,则往下执行。如果是0,则等待。
semaphore.signal():代表运行结束,信号量加1,有等待的任务这个时候才会继续执行。
//获取系统存在的全局队列
let queue = DispatchQueue.global(qos: .default)
//当并行执行的任务更新数据时,会产生数据不一样的情况
for i in 1...10 {
queue.async {
print("\(i)")
}
}
//使用信号量保证正确性
//创建一个初始计数值为1的信号
let semaphore = DispatchSemaphore(value: 1)
for i in 1...10 {
queue.async {
//永久等待,直到Dispatch Semaphore的计数值 >= 1
semaphore.wait()
print("\(i)")
//发信号,使原来的信号计数值+1
semaphore.signal()
}
}
网友评论