美文网首页
让面试官满意的排序算法(图文解析)

让面试官满意的排序算法(图文解析)

作者: 橙味菌 | 来源:发表于2020-01-06 16:25 被阅读0次

    让面试官满意的排序算法(图文解析)

    • 这种排序算法能够让面试官面露微笑

    • 这种排序算法集各排序算法之大成

    • 这种排序算法逻辑性十足

    • 这种排序算法能够展示自己对Java底层的了解

      这种排序算法出自Vladimir Yaroslavskiy、Jon Bentley和Josh Bloch三位大牛之手,它就是JDK的排序算法——java.util.DualPivotQuicksort(双支点快排)

    DualPivotQuicksort

    先看一副逻辑图(如有错误请大牛在评论区指正)

    插排指的是改进版插排——哨兵插排

    快排指的是改进版快排——双支点快排

    DualPivotQuickSort没有Object数组排序的逻辑,此逻辑在Arrays中,好像是归并+Tim排序

    图像应该很清楚:对于不同的数据类型,Java有不同的排序策略:

    • byte、short、char 他们的取值范围有限,使用计数排序占用的空间也不过256/65536个单位,只要排序的数量不是特别少(有一个计数排序阈值,低于这个阈值的话就没有不要用空间换时间了),都应使用计数排序
    • int、long、float、double 他们的取值范围非常的大,不适合使用计数排序
    • float和double 他们又有特殊情况:
      • NAN(not a number),NAN不等于任何数字,甚至不等于自己
      • +0.0,-0.0,float和double无法精确表示十进制小数,我们所看到的十进制小数其实都是取得近似值,因而会有+0.0(接近0的正浮点数)和-0.0(接近0的负浮点数),在排序流程中统一按0来处理,因而最后要调整一下-0.0和+0.0的位置关系
    • Object

    计数排序

    计数排序是以空间换时间的排序算法,它时间复杂度O(n),空间复杂度O(m)(m为排序数值可能取值的数量),只有在范围较小的时候才应该考虑计数排序

    (源码以short为例)

    int[] count = new int[NUM_SHORT_VALUES]; //1 << 16 = 65536,即short的可取值数量
    
    //计数,left和right为数组要排序的范围的左界和右界
    //注意,直接把
    for (int i = left - 1; ++i <= right;count[a[i] - Short.MIN_VALUE]++);
    
    //排序
    for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
        while (count[--i] == 0);
        short value = (short) (i + Short.MIN_VALUE);
        int s = count[i];
    
        do {
            a[--k] = value;
        } while (--s > 0);
    }
    

    哨兵插排

    当数组元素较少时,时间O(n2)和O(logn)其实相差无几,而插排的空间占用率要少于快排和归并排序,因而当数组元素较少时(<插排阈值),优先使用插排

    哨兵插排是对插排的优化,原插排每次取一个值进行遍历插入,而哨兵插排则取两个,较大的一个(小端在前的排序)作为哨兵,当哨兵遍历到自己的位置时,另一个值可以直接从哨兵当前位置开始遍历,而不用再重头遍历

    只画了静态图,如果有好的绘制Gif的工具请在评论区告诉我哦

    我们来看一下源码:

    if (leftmost) {
        //传统插排(无哨兵Sentinel)
        //遍历
        //循环向左比较(<左侧元素——换位)-直到大于左侧元素
        for (int i = left, j = i; i < right; j = ++i) {
            int ai = a[i + 1];
            while (ai < a[j]) {
                a[j + 1] = a[j];
                if (j-- == left) {
                    break;
                }
            }
            a[j + 1] = ai;
        }
        
        //哨兵插排
    } else {
        //如果一开始就是排好序的——直接返回
        do {
            if (left >= right) {
                return;
            }
        } while (a[++left] >= a[left - 1]);
    
        //以两个为单位遍历,大的元素充当哨兵,以减少小的元素循环向左比较的范围
        for (int k = left; ++left <= right; k = ++left) {
            int a1 = a[k], a2 = a[left];
    
            if (a1 < a2) {
                a2 = a1; a1 = a[left];
            }
            while (a1 < a[--k]) {
                a[k + 2] = a[k];
            }
            a[++k + 1] = a1;
    
            while (a2 < a[--k]) {
                a[k + 1] = a[k];
            }
            a[k + 1] = a2;
        }
        //确保最后一个元素被排序
        int last = a[right];
    
        while (last < a[--right]) {
            a[right + 1] = a[right];
        }
        a[right + 1] = last;
    }
    return;
    

    双支点快排

    重头戏:双支点快排!

    快排虽然稳定性不如归并排序,但是它不用复制来复制去,省去了一段数组的空间,在数组元素较少的情况下稳定性影响也会下降(>插排阈值 ,<快排阈值),优先使用快排

    双支点快排在原有的快排基础上,多加一个支点,左右共进,效率提升

    看图:

    1. 第一步,取支点

      注意:如果5个节点有相等的任两个节点,说明数据不够均匀,那就要使用单节点快排

    2. 快排

    源码(int为例,这么长估计也没人看)

    // Inexpensive approximation of length / 7 
    // 快排阈值是286 其7分之一小于等于1/8+1/64+1
    int seventh = (length >> 3) + (length >> 6) + 1;
    
    // 获取分成7份的五个中间点
    int e3 = (left + right) >>> 1; // The midpoint
    int e2 = e3 - seventh;
    int e1 = e2 - seventh;
    int e4 = e3 + seventh;
    int e5 = e4 + seventh;
    
    // 保证中间点的元素从小到大排序
    if (a[e2] < a[e1]) { 
        int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
    
    if (a[e3] < a[e2]) { 
        int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
        if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
    }
    if (a[e4] < a[e3]) { 
        int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
        if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                        if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                       }
    }
    if (a[e5] < a[e4]) { 
        int t = a[e5]; a[e5] = a[e4]; a[e4] = t;                    
        if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                        if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                                        if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                                       }
                       }
    }
    
    // Pointers
    int less  = left;  // The index of the first element of center part
    int great = right; // The index before the first element of right part
    
    //点彼此不相等——分三段快排,否则分两段
    if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
        /*
                 * Use the second and fourth of the five sorted elements as pivots.
                 * These values are inexpensive approximations of the first and
                 * second terciles of the array. Note that pivot1 <= pivot2.
                 */
        int pivot1 = a[e2];
        int pivot2 = a[e4];
    
        /*
                 * The first and the last elements to be sorted are moved to the
                 * locations formerly occupied by the pivots. When partitioning
                 * is complete, the pivots are swapped back into their final
                 * positions, and excluded from subsequent sorting.
                 */
        a[e2] = a[left];
        a[e4] = a[right];
    
        while (a[++less] < pivot1);
        while (a[--great] > pivot2);
    
        /*
                 * Partitioning:
                 *
                 *   left part           center part                   right part
                 * +--------------------------------------------------------------+
                 * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
                 * +--------------------------------------------------------------+
                 *               ^                          ^       ^
                 *               |                          |       |
                 *              less                        k     great
                 */
        outer:
        for (int k = less - 1; ++k <= great; ) {
            int ak = a[k];
            if (ak < pivot1) { // Move a[k] to left part
                a[k] = a[less];
                /*
                         * Here and below we use "a[i] = b; i++;" instead
                         * of "a[i++] = b;" due to performance issue.
                         */
                a[less] = ak;
                ++less;
            } else if (ak > pivot2) { // Move a[k] to right part
                while (a[great] > pivot2) {
                    if (great-- == k) {
                        break outer;
                    }
                }
                if (a[great] < pivot1) { // a[great] <= pivot2
                    a[k] = a[less];
                    a[less] = a[great];
                    ++less;
                } else { // pivot1 <= a[great] <= pivot2
                    a[k] = a[great];
                }
                /*
                         * Here and below we use "a[i] = b; i--;" instead
                         * of "a[i--] = b;" due to performance issue.
                         */
                a[great] = ak;
                --great;
            }
        }
    
        // Swap pivots into their final positions
        a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
        a[right] = a[great + 1]; a[great + 1] = pivot2;
    
        // Sort left and right parts recursively, excluding known pivots
        sort(a, left, less - 2, leftmost);
        sort(a, great + 2, right, false);
    
        /*
                 * If center part is too large (comprises > 4/7 of the array),
                 * swap internal pivot values to ends.
                 */
        if (less < e1 && e5 < great) {
            /*
                     * Skip elements, which are equal to pivot values.
                     */
            while (a[less] == pivot1) {
                ++less;
            }
    
            while (a[great] == pivot2) {
                --great;
            }
    
            /*
                     * Partitioning:
                     *
                     *   left part         center part                  right part
                     * +----------------------------------------------------------+
                     * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                     * +----------------------------------------------------------+
                     *              ^                        ^       ^
                     *              |                        |       |
                     *             less                      k     great
                     *
                     * Invariants:
                     *
                     *              all in (*,  less) == pivot1
                     *     pivot1 < all in [less,  k)  < pivot2
                     *              all in (great, *) == pivot2
                     *
                     * Pointer k is the first index of ?-part.
                     */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                int ak = a[k];
                if (ak == pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else if (ak == pivot2) { // Move a[k] to right part
                    while (a[great] == pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] == pivot1) { // a[great] < pivot2
                        a[k] = a[less];
                        /*
                                 * Even though a[great] equals to pivot1, the
                                 * assignment a[less] = pivot1 may be incorrect,
                                 * if a[great] and pivot1 are floating-point zeros
                                 * of different signs. Therefore in float and
                                 * double sorting methods we have to use more
                                 * accurate assignment a[less] = a[great].
                                 */
                        a[less] = pivot1;
                        ++less;
                    } else { // pivot1 < a[great] < pivot2
                        a[k] = a[great];
                    }
                    a[great] = ak;
                    --great;
                }
            }
        }
    
        // Sort center part recursively
        sort(a, less, great, false);
    
    } else { // Partitioning with one pivot
        /*
                 * Use the third of the five sorted elements as pivot.
                 * This value is inexpensive approximation of the median.
                 */
        int pivot = a[e3];
    
        /*
                 * Partitioning degenerates to the traditional 3-way
                 * (or "Dutch National Flag") schema:
                 *
                 *   left part    center part              right part
                 * +-------------------------------------------------+
                 * |  < pivot  |   == pivot   |     ?    |  > pivot  |
                 * +-------------------------------------------------+
                 *              ^              ^        ^
                 *              |              |        |
                 *             less            k      great
                 *
                 * Invariants:
                 *
                 *   all in (left, less)   < pivot
                 *   all in [less, k)     == pivot
                 *   all in (great, right) > pivot
                 *
                 * Pointer k is the first index of ?-part.
                 */
        for (int k = less; k <= great; ++k) {
            if (a[k] == pivot) {
                continue;
            }
            int ak = a[k];
            if (ak < pivot) { // Move a[k] to left part
                a[k] = a[less];
                a[less] = ak;
                ++less;
            } else { // a[k] > pivot - Move a[k] to right part
                while (a[great] > pivot) {
                    --great;
                }
                if (a[great] < pivot) { // a[great] <= pivot
                    a[k] = a[less];
                    a[less] = a[great];
                    ++less;
                } else { // a[great] == pivot
                    /*
                             * Even though a[great] equals to pivot, the
                             * assignment a[k] = pivot may be incorrect,
                             * if a[great] and pivot are floating-point
                             * zeros of different signs. Therefore in float
                             * and double sorting methods we have to use
                             * more accurate assignment a[k] = a[great].
                             */
                    a[k] = pivot;
                }
                a[great] = ak;
                --great;
            }
        }
    
        /*
                 * Sort left and right parts recursively.
                 * All elements from center part are equal
                 * and, therefore, already sorted.
                 */
        sort(a, left, less - 1, leftmost);
        sort(a, great + 1, right, false);
    }
    

    归并排序

    你不会以为元素多(>快排阈值)就一定要用归并了吧?

    错!元素多时确实对算法的稳定性有要求,可是如果这些元素能够稳定快排呢?

    开发JDK的大牛显然考虑了这一点:他们在归并排序之前对元素进行了是否能稳定快排的判断:

    • 如果数组本身几乎已经排好了(可以看出几段有序数组的拼接),那还排什么,理一理返回就行了
    • 如果出现连续33个相等元素——使用快排(实话说,我没弄明白为什么,有无大牛给我指点迷津?)
    //判断结构是否适合归并排序
    int[] run = new int[MAX_RUN_COUNT + 1];
    int count = 0; run[0] = left;
    
    // Check if the array is nearly sorted
    for (int k = left; k < right; run[count] = k) {
        if (a[k] < a[k + 1]) { // ascending
            while (++k <= right && a[k - 1] <= a[k]);
        } else if (a[k] > a[k + 1]) { // descending
            while (++k <= right && a[k - 1] >= a[k]);
            for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
            }
        } else { 
            //连续MAX_RUN_LENGTH(33)个相等元素,使用快排
            for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                if (--m == 0) {
                    sort(a, left, right, true);
                    return;
                }
            }
        }
    
        //count达到MAX_RUN_LENGTH,使用快排
        if (++count == MAX_RUN_COUNT) {
            sort(a, left, right, true);
            return;
        }
    }
    
    // Check special cases
    // Implementation note: variable "right" is increased by 1.
    if (run[count] == right++) { // The last run contains one element
        run[++count] = right;
    } else if (count == 1) { // The array is already sorted
        return;
    }
    

    归并排序源码

    byte odd = 0;
    for (int n = 1; (n <<= 1) < count; odd ^= 1);
    
    // Use or create temporary array b for merging
    int[] b;                 // temp array; alternates with a
    int ao, bo;              // array offsets from 'left'
    int blen = right - left; // space needed for b
    if (work == null || workLen < blen || workBase + blen > work.length) {
        work = new int[blen];
        workBase = 0;
    }
    if (odd == 0) {
        System.arraycopy(a, left, work, workBase, blen);
        b = a;
        bo = 0;
        a = work;
        ao = workBase - left;
    } else {
        b = work;
        ao = 0;
        bo = workBase - left;
    }
    
    // Merging
    for (int last; count > 1; count = last) {
        for (int k = (last = 0) + 2; k <= count; k += 2) {
            int hi = run[k], mi = run[k - 1];
            for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                    b[i + bo] = a[p++ + ao];
                } else {
                    b[i + bo] = a[q++ + ao];
                }
            }
            run[++last] = hi;
        }
        if ((count & 1) != 0) {
            for (int i = right, lo = run[count - 1]; --i >= lo;
                 b[i + bo] = a[i + ao]
                );
            run[++last] = right;
        }
        int[] t = a; a = b; b = t;
        int o = ao; ao = bo; bo = o;
    }
    

    技术不分领域,思想一脉相承,欢迎访问橙味菌的博客
    本文由博客一文多发平台 OpenWrite 发布!

    相关文章

      网友评论

          本文标题:让面试官满意的排序算法(图文解析)

          本文链接:https://www.haomeiwen.com/subject/sxpkactx.html