美文网首页
docplex实践应用-1 求解Facility Locatio

docplex实践应用-1 求解Facility Locatio

作者: 逆旅ROS | 来源:发表于2019-10-06 11:15 被阅读0次

    问题描述

    以一个经典的选址问题为例,建立数学模型,假设V_1代表4s店的集合,V_2代表配送中心的侯选地点的集合,而弧长A=V_1×V_2则代表可能的配送中心地点与需求节点之间的物流量。假设有|V_1 |个起始点(4s店)和|V_2|个配送中心。
    变量
    x_ij:表示4s店i运送到配送中心j的数量;
    y_j:表示j点是否设为配送中心;
    c_ij:表示i到j的运输费用,通过运输距离乘以单价得到;
    f_j:表示j点建设配送中心的固定成本;
    q_j:表示j点建造配送中心的容量;
    p:表示配送中心的建设数量;

    模型

    公式蛮难打的,我就截图了hh


    image.png

    程序

    数据部分

    from docplex.mp.model import Model  #调用cplex solver
    import numpy as np
    import folium
    import xlrd 
    from geopy.distance import great_circle
     
    def get_distance(p1, p2):
        return great_circle(p1,p2).meters
    
    class city:
        def __init__(self, name, x, y):
            self.x = x
            self.y = y
            self.name = name
    
    # 读取和处理起始点(客户)数据
    filename = '/Users/chenyanbo/Documents/python/cplextest/docplex/test.xlsx'
    book = xlrd.open_workbook(filename)
    sheet = book.sheet_by_name('Sheet1')
    #['序号', '起始地-目的地', '纬度', '经度', '参考距离\n(km)', '汇总']
    city_o = city(sheet.col_values(1),sheet.col_values(2),sheet.col_values(3))
    demand = sheet.col_values(5)
    
    # 读取和处理终点(候选配送中心)数据
    filename = '/Users/chenyanbo/Documents/python/cplextest/docplex/test2.xlsx'
    book = xlrd.open_workbook(filename)
    sheet = book.sheet_by_name('Sheet1')
    city_d = city(sheet.col_values(0)[1:],sheet.col_values(1)[1:],sheet.col_values(2)[1:])
    
    # 计算起点到终点的距离矩阵 这是20行35列
    num_city_o = len(city_o.x)
    num_city_d = len(city_d.x)
    distance = np.zeros((num_city_o,num_city_d))
    for i in range(0,num_city_o):
        for j in range(0,num_city_d):
            distance[i][j] = get_distance([city_o.x[i],city_o.y[i]],[city_d.x[j],city_d.y[j]])
    

    模型部分

    # 模型的建立和求解
    mdl = Model(name='test model') # 初始化模型
    
    customer = [i for i in range(0,num_city_o)] 
    facility = [j for j in range(0,num_city_d)]
    
    y = mdl.binary_var_list(facility,name='is_open')
    x = mdl.continuous_var_matrix(customer,facility,name = 'serviced_amount')
    
    d = 4 * demand
    f = 500000 * np.ones(num_city_d)
    M = 1000 * np.ones(num_city_d)
    # c = [[4,5,6,8,10],[6,4,3,5,8],[9,7,4,3,4]]
    # c = np.transpose(np.array([cost,cost]))
    price = 10
    c = price * distance
    
    mdl.minimize(
                mdl.sum(f[j]*y[j] for j in facility)
                +
                mdl.sum(c[i,j]*x[i,j] for i in customer for j in facility)
                )       
      # 目标函数:最大化利润
    
    # 添加约束条件
    mdl.add_constraints(mdl.sum(x[i,j] for j in facility) == d[i] for i in customer)
    mdl.add_constraints(mdl.sum(x[i,j] for i in customer) <= M[j]*y[j] for j in facility)
    mdl.add_constraints(x[i,j] >= 0 for i in customer for j in facility)
    mdl.add_constraint(mdl.sum(y[j] for j in facility) == 5) 
    
    # mdl.print_information()
    
    sol = mdl.solve() # 求解模型
    mdl.print_solution()
    
    total_cost = mdl.objective_value
    open_facility = [f_loc for f_loc in range(0,num_city_d) if y[f_loc].solution_value == 1]
    print("总费用为: %g" %total_cost)
    print("被选为配送中心的城市为:")
    for f_loc in range(0,len(open_facility)): 
       print(city_d.name[open_facility[f_loc]])
    

    结果输出

    objective: 164679104.574
      is_open_0=1
      is_open_9=1
      is_open_13=1
      is_open_15=1
      is_open_33=1
      serviced_amount_0_15=34.000
      serviced_amount_1_15=3.000
      serviced_amount_2_9=3.000
      serviced_amount_3_9=1.000
      serviced_amount_4_9=1.000
      serviced_amount_5_15=1.000
      serviced_amount_6_15=1.000
      serviced_amount_7_15=1.000
      serviced_amount_9_9=1.000
      serviced_amount_10_15=1.000
      serviced_amount_14_9=1.000
      serviced_amount_15_9=1.000
      serviced_amount_16_9=1.000
      serviced_amount_17_9=1.000
      serviced_amount_20_13=13.000
      serviced_amount_21_13=2.000
      serviced_amount_22_13=1.000
      serviced_amount_23_13=2.000
      serviced_amount_24_13=1.000
      serviced_amount_25_13=1.000
      serviced_amount_26_9=2.000
      serviced_amount_27_9=1.000
      serviced_amount_28_33=2.000
      serviced_amount_29_0=2.000
      serviced_amount_30_0=1.000
      serviced_amount_31_33=2.000
      serviced_amount_32_0=2.000
      serviced_amount_33_0=1.000
      serviced_amount_34_33=1.000
      serviced_amount_35_9=1.000
      serviced_amount_36_0=1.000
      serviced_amount_38_0=1.000
      serviced_amount_40_9=1.000
      serviced_amount_41_0=1.000
    总费用为: 1.64679e+08
    被选为配送中心的城市为:
    重庆
    天津
    深圳
    上海
    长沙
    

    输出数据处理和可视化

    # 输出运输量
    cf = [[i,j] for i in range(0,num_city_o) for j in range(0,num_city_d) if x[i,j].solution_value != 0]
    cf_values = list(sol.get_value_dict(x).values())
    cf_values = [cf_values[i] for i in range(0,len(cf_values)) if cf_values[i] != 0]
    cf = np.column_stack((cf,cf_values))
    
    # 绘图部分
    map_osm = folium.Map(location=[34,108], zoom_start=4.25)
    for i in range(0,num_city_o):
        folium.Marker([city_o.x[i],city_o.y[i]]).add_to(map_osm)
    for j in range(0,len(open_facility)):
        folium.Marker([city_d.x[open_facility[j]],city_d.y[open_facility[j]]]).add_to(map_osm)
    for k in range(0,len(cf)):
        cf = cf.astype(int)
        map_osm.add_child(folium.PolyLine([[city_o.x[cf[k,0]],city_o.y[cf[k,0]]],[city_d.x[cf[k,1]],city_d.y[cf[k,1]]]], color='    #FF6A6A', weight=6))
    map_osm
    
    选址结果.png

    小结

    docplex真好用,现在基本上更新到cplex129以后就支持python3.7了,对于约束和变量的写法都比较轻松,类似于matlab里的Yalmip工具。

    相关文章

      网友评论

          本文标题:docplex实践应用-1 求解Facility Locatio

          本文链接:https://www.haomeiwen.com/subject/sylupctx.html