美文网首页
Disruptor入门

Disruptor入门

作者: 多喝水JS | 来源:发表于2019-04-12 17:32 被阅读0次

需求

生产者传递一个long类型的值给消费者,而消费者消费这个数据的方式仅仅是把它打印出来。

Event

声明一个Event来包含需要传递的数据

public class LongEvent { 
    private long value;
    public long getValue() { 
        return value; 
    } 
 
    public void setValue(long value) { 
        this.value = value; 
    } 
} 

还需要一个事件消费者,也就是一个事件处理器。这个事件处理器简单地把事件中存储的数据打印到终端:

public class LongEventHandler implements EventHandler<LongEvent> { 
    @Override 
    public void onEvent(LongEvent longEvent, long l, boolean b) throws Exception { 
        System.out.println(longEvent.getValue()); 
    } 
} 

事件生产者

public class LongEventProducer { 
    private final RingBuffer<LongEvent> ringBuffer;
    public LongEventProducer(RingBuffer<LongEvent> ringBuffer) { 
        this.ringBuffer = ringBuffer; 
    } 
 
    /** 
     * onData用来发布事件,每调用一次就发布一次事件 
     * 它的参数会通过事件传递给消费者 
     * 
     * @param bb 
     */public void onData(ByteBuffer bb) { 
            //可以把ringBuffer看做一个事件队列,那么next就是得到下面一个事件槽
            long sequence = ringBuffer.next();try { 
            //用上面的索引取出一个空的事件用于填充 
            LongEvent event = ringBuffer.get(sequence);// for the sequence 
            event.setValue(bb.getLong(0)); 
        } finally { 
            //发布事件 
            ringBuffer.publish(sequence); 
        } 
    } 
} 

发布事件最少需要两步:获取下一个事件槽并发布事件(发布事件的时候要使用try/finnally保证事件一定会被发布)。如果我们使用RingBuffer.next()获取一个事件槽,那么一定要发布对应的事件。如果不能发布事件,那么就会引起Disruptor状态的混乱。尤其是在多个事件生产者的情况下会导致事件消费者失速,从而不得不重启应用才能会恢复。

事件处理系统

public class LongEventMain { 
    public static void main(String[] args) throws InterruptedException { 
        // Executor that will be used to construct new threads for consumers 
        Executor executor = Executors.newCachedThreadPool();
        // The factory for the event 
        LongEventFactory factory = new LongEventFactory();
        // Specify the size of the ring buffer, must be power of 2.
        int bufferSize = 1024;
        // Construct the Disruptor 
        Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(factory, bufferSize, executor);
        // Connect the handler 
        disruptor.handleEventsWith(new LongEventHandler());
        // Start the Disruptor, starts all threads running 
        disruptor.start();
        // Get the ring buffer from the Disruptor to be used for publishing. 
        RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(); 
 
        LongEventProducer producer = new LongEventProducer(ringBuffer); 
 
        ByteBuffer bb = ByteBuffer.allocate(8);
        for (long l = 0; true; l++) { 
            bb.putLong(0, l); 
            producer.onData(bb); 
            Thread.sleep(1000); 
        } 
    } 
} 

Disruptor 3.0写法

事件生产者

public class LongEventProducerWithTranslator { 
    //一个translator可以看做一个事件初始化器,publicEvent方法会调用它
    //填充Event
    private static final EventTranslatorOneArg<LongEvent, ByteBuffer> TRANSLATOR = 
            new EventTranslatorOneArg<LongEvent, ByteBuffer>() { 
                public void translateTo(LongEvent event, long sequence, ByteBuffer bb) { 
                    event.setValue(bb.getLong(0)); 
                } 
            };
    private final RingBuffer<LongEvent> ringBuffer;
    public LongEventProducerWithTranslator(RingBuffer<LongEvent> ringBuffer) { 
        this.ringBuffer = ringBuffer; 
    } 
 
    public void onData(ByteBuffer bb) { 
        ringBuffer.publishEvent(TRANSLATOR, bb); 
    } 
} 

Disruptor提供了不同的接口(EventTranslator, EventTranslatorOneArg, EventTranslatorTwoArg, 等等)去产生一个Translator对象。很明显,Translator中方法的参数是通过RingBuffer来传递的。

使用Java 8

Disruptor在自己的接口里面添加了对于Java 8 Lambda的支持。大部分Disruptor中的接口都符合Functional Interface的要求(也就是在接口中仅仅有一个方法)。所以在Disruptor中,可以广泛使用Lambda来代替自定义类。

public class LongEventMainJava8 { 
    /** 
     * 用lambda表达式来注册EventHandler和EventProductor 
     * @param args 
     * @throws InterruptedException 
     */public static void main(String[] args) throws InterruptedException { 
        // Executor that will be used to construct new threads for consumers 
        Executor executor = Executors.newCachedThreadPool();
        // Specify the size of the ring buffer, must be power of 2.
        int bufferSize = 1024;// Construct the Disruptor 
        Disruptor<LongEvent> disruptor = new Disruptor<>(LongEvent::new, bufferSize, executor);
        // 可以使用lambda来注册一个EventHandler 
        disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event.getValue()));
        // Start the Disruptor, starts all threads running 
        disruptor.start();
        // Get the ring buffer from the Disruptor to be used for publishing. 
        RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(); 
 
        LongEventProducer producer = new LongEventProducer(ringBuffer); 
 
        ByteBuffer bb = ByteBuffer.allocate(8);for (long l = 0; true; l++) { 
            bb.putLong(0, l); 
            ringBuffer.publishEvent((event, sequence, buffer) -> event.setValue(buffer.getLong(0)), bb); 
            Thread.sleep(1000); 
        } 
    } 
} 

单或多 事件生产者

Disruptor默认情况下是多生产者
在并发系统中提高性能最好的方式之一就是单一写者原则,对Disruptor也是适用的。如果在你的代码中仅仅有一个事件生产者,那么可以设置为单一生产者模式来提高系统的性能。

public class singleProductorLongEventMain { 
    public static void main(String[] args) throws Exception { 
        //.....// Construct the Disruptor with a SingleProducerSequencer 
 
        Disruptor<LongEvent> disruptor = new Disruptor(factory, 
                bufferSize, 
                // Single producernew 
                ProducerType.SINGLE, BlockingWaitStrategy(), 
                executor);//..... 
    } 
} 

可选的等待策略

Disruptor默认的等待策略是BlockingWaitStrategy。这个策略的内部适用一个锁和条件变量来控制线程的执行和等待(Java基本的同步方法)。BlockingWaitStrategy是最慢的等待策略,但也是CPU使用率最低和最稳定的选项。然而,可以根据不同的部署环境调整选项以提高性能。

  • SleepingWaitStrategy

和BlockingWaitStrategy一样,SpleepingWaitStrategy的CPU使用率也比较低。它的方式是循环等待并且在循环中间调用LockSupport.parkNanos(1)来睡眠,(在Linux系统上面睡眠时间60µs).然而,它的优点在于生产线程只需要计数,而不执行任何指令。并且没有条件变量的消耗。但是,事件对象从生产者到消费者传递的延迟变大了。SleepingWaitStrategy最好用在不需要低延迟,而且事件发布对于生产者的影响比较小的情况下。比如异步日志功能。

  • YieldingWaitStrategy

YieldingWaitStrategy是可以被用在低延迟系统中的两个策略之一,这种策略在减低系统延迟的同时也会增加CPU运算量。YieldingWaitStrategy策略会循环等待sequence增加到合适的值。循环中调用Thread.yield()允许其他准备好的线程执行。如果需要高性能而且事件消费者线程比逻辑内核少的时候,推荐使用YieldingWaitStrategy策略。例如:在开启超线程的时候。

  • BusySpinWaitStrategy

BusySpinWaitStrategy是性能最高的等待策略,同时也是对部署环境要求最高的策略。这个性能最好用在事件处理线程比物理内核数目还要小的时候。例如:在禁用超线程技术的时候。

参考

Disruptor入门

相关文章

网友评论

      本文标题:Disruptor入门

      本文链接:https://www.haomeiwen.com/subject/syocwqtx.html